c-pro 3 nano HPRU

Контроллер для тепловых насосов

Важное

Внимательно прочтите этот документ перед установкой и использованием устройства и следуйте всем рекомендациям, сохраните этот документ вместе с устройством для будущих консультаций.

При прочтении документа используются следующие символы:

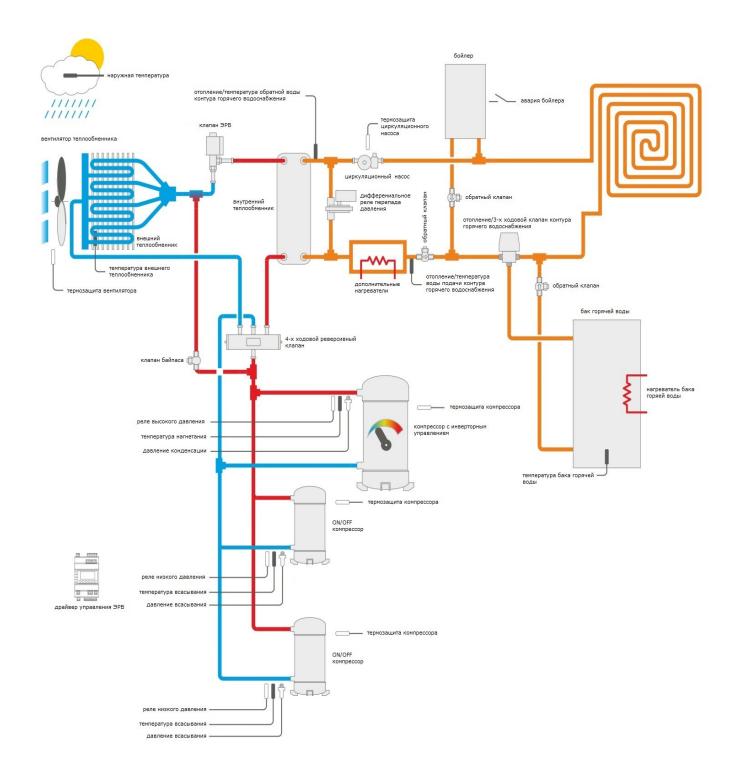
- указывает на предложение
- △ указывает на предупреждение

Устройство необходимо утилизировать в соответствии с местными стандартами по сбору электрического и электронного оборудования.

Содержание

1.	ОБЩАЯ ИНФОРМАЦИЯ	6
1.1	Описание	6
1.2	Базовая схема	7
2	АППАРАТНЫЕ РЕШЕНИЯ	8
2.1	Решение с использованием c-pro 3 nano HPRU	8
3	РАЗМЕРЫ И УСТАНОВКА	9
3.1	Размеры и установка c-pro 3 nano HPRU	9
3.2	Размеры и установка EVDRIVE03/06 и EVD094	9
3.3	Размеры и установка EPJgraph	11
	3.3.1 Модели для врезного монтажа	11
	3.3.2 Модели для настенного монтажа	11
3.4	Размеры и установка Vled 3	12
4	ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ	13
4.1	Электрическое подключение c-pro 3 nano HPRU	13
4.2	Электрическое подключение EVDRIVE03/06	16
4.3	Электрическое подключение EVD094	19
4.4	Электрическое соединение EPJgraph	21
	4.4.1 Модели для врезного монтажа	21
	4.4.2 Модели для настенного монтажа	22
4.5	Электрическое подключение Vled 3	23
5	ТАБЛИЦЫ КОНФИГУРАЦИИ ВХОДОВ/ВЫХОДОВ	24
5.1	Таблица конфигурации входов/выходов для c-pro 3 nano HPRU без управления контуром ГВС	24
5.2	Таблица конфигурации входов/выходов для c-pro 3 nano HPRU с управлением контуром ГВС	
6	НАСТРОЙКА ВХОДОВ/ВЫХОДОВ	28
6.1	Конфигурирование входов/выходов для c-pro 3 nano HPRU	
7	ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС	36
7.1	Пользовательский интерфейс c-pro 3 nano HPRU и Vled 3	36
7.2	Пользовательский интерфейс EPJgraph	36
8	СТРУКТУРА МЕНЮ И ПОДМЕНЮ	37
8.1	EPJgraph страницы	37
8.2	Главное меню	41
	8.2.1 Рабочее состояние	
	8.2.2 Параметры	
	8.2.3 Вход Выход	
	8.2.4 Сигнализации	43
9	УПРАВЛЕНИЕ	
9.1	Управление рабочим состоянием	
	9.1.1 Включение и выключение	
	9.1.2 Изменение режима работы	
9.2	Управление нагревом	
	9.2.1 Компрессоры ON-OFF	45

	9.2.2 Модулирующее регулирование	47
10	ГОРЯЧАЯ ВОДА (ГВС)	51
10.1	Управление по приоритетам	51
	10.1.1 Режимы	51
10.2	Использование дополнительного нагрева	52
10.3	Управление цепью солнечных панелей нагрева	53
	10.3.1 Высокая температура	54
10.4	Антилегионелла	54
	10.4.1 Методика производительности	54
11	УПРАВЛЕНИЕ ИСТОЧНИКОМ ТЕПЛА	55
11.1	Пластинчатые теплообменники с вентилятором	55
12	УПРАВЛЕНИЕ ТЕПЛООБМЕННИКОМ ПОТРЕБИТЕЛЯ	57
13	УПРАВЛЕНИЕ РАЗМОРАЖИВАНИЕМ	57
13.1	Размораживание по кнопке	57
13.2	Размораживание по времени	57
13.3	Размораживание по температуре и давлению	57
13.4	Адаптивное размораживание	57
13.5	Вентилятор в режиме размораживания	59
13.6	Время ожидания температуры окончания размораживания	59
13.7	Нагреватель «антиобледенения» дренажа конденсата	60
14	УПРАВЛЕНИЕ КОМПРЕССОРАМИ	61
14.1	Конфигурация компрессоров по мощности	61
14.2	Ограничение мощности	61
14.3	Откачка	61
14.4	Задержки безопасности	62
14.5	Последовательность включения/выключения	62
	14.5.1 Конфигурации с фиксированной последовательностью	62
	14.5.2 Конфигурация с переменной последовательностью	63
14.6	Управление модулирующими компрессорами	63
	14.6.1 Включение и выключение с соответствующими задержками безопасности	63
	14.6.2 Управление кривой модулирующего компрессора	63
	14.6.3 Снижение оборотов (разгрузка)	64
	14.6.4 Управление возвратом масла в компрессор	65
15	УПРАВЛЕНИЕ ЭЛЕКТРОННЫМ РАСШИРИТЕЛЬНЫМ КЛАПАНОМ	66
15.1	Включение работы ЭРВ	66
15.2	Набор параметров ПИД	66
15.3	Модуляция по уставке перегрева (Нейтральная зона)	67
15.4	Откачка	67
16	УПРАВЛЕНИЕ БАЙПАСОМ КОМПРЕССОРА	68
17	УПРАВЛЕНИЕ БАЙПАСОМ ГОРЯЧЕГО ГАЗА	68
18	ДОПОЛНИТЕЛЬНЫЙ НАГРЕВАТЕЛЬ	68
18.1	Низкая наружная температура (воздух-вода)	69
18.2	Уставка не достигается	70


18.3	Разм	ораживание	70		
19	ВСПОМОГАТЕЛЬНЫЕ ФУНКЦИИ				
20	КЛАПАН С ЭЛЕКТРОПРИВОДОМ				
21	ПРЕДВАРИ	ТЕЛЬНЫЕ АВАРИИ	74		
22	АВАРИИ		76		
22.1	Защи	та от замерзания	76		
22.2	Упра	вление авариями по температуре	76		
	22.2.1	Авария высокой температуры	77		
	22.2.2	Авария низкой температуры	77		
	22.2.3	Авария высокой температуры горячего газа компрессора	77		
22.3	Упра	вление авариями по давлению	78		
	22.3.1	Высокое давление от реле давления	78		
	22.3.2	Низкое давление от реле давления	78		
	22.3.3	Авария высокого давления от датчика	78		
	22.3.4	Авария низкого давления от датчика	79		
22.4	Упра	вление авариями алгоритма контроля перегрева	79		
	22.4.1	Авария низкого перегрева LoSH	80		
	22.4.2	Авария высокого перегрева HiSH	80		
	22.4.3	Авария низкого рабочего давления LOP	80		
	22.4.4	Авария высокого рабочего давления МОР	80		
	22.4.5	Авария низкого давления LP	80		
22.5	Авар	ия контроля фаз	80		
22.6	Диаг	ностика	80		
	22.6.1	Аварии с ручным сбросом	80		
	22.6.2	Аварии с автоматическим сбросом	81		
22.7	Табл	ица аварий	81		
22.8	Журн	нал аварий	86		
23	ПАРАМЕТРЫ КОНФИГУРАЦИИ		87		
23.1	Общі	ий список параметров конфигурации	87		
23.2	Пара	метры конфигурации c-pro 3 nano HPRU	118		
24	СПИСОК ПЕРЕМЕННЫХ MODBUS				
24.1	Спис	ок переменных MODBUS c-pro 3 nano HPRU	124		

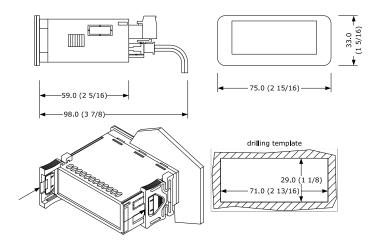
1. ОБЩАЯ ИНФОРМАЦИЯ

1.1 Описание

с-рго 3 HPRU — это линейка контроллеров для управления реверсивными (тепло-холод) тепловыми насосами и электронными расширительными клапанами. Контроллеры доступны в версии со встроенным светодиодным дисплеем или в версии без дисплея с удаленным пользовательским интерфейсом EPJgraph или Vled 3. Контроллеры могут управлять наиболее распространенными функциями бытового теплового насоса и интегрировать управление электронным расширительным клапаном для максимального повышения эффективности установки. Используя коммуникационные порты, контроллеры могут быть подключены к системе программного обеспечения настройки Parameters Manager или к системе мониторинга, а также загружать и выгружать параметры конфигурации.

1.2 Базовая схема

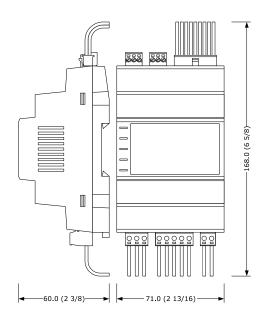
2 АППАРАТНЫЕ РЕШЕНИЯ

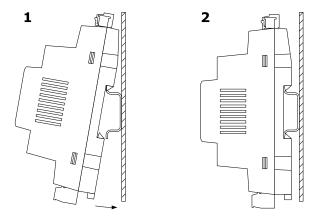

2.1 Решение с использованием c-pro 3 nano HPRU

	c-pro 3 nano HPRU	06 1	06 2	EVD094	Vled 3	EPJgraph
Функция	Контроллер	Драйвер ЭРВ для управления перегревом	Драйвер ЭРВ для управления перепуском горячего газа	Расширение ввода-вывода	Удаленный пользователь- ский интерфейс	Удаленный пользователь- ский интерфейс
Подключение к контроллеру	-	CAN	CAN	INTRABUS	INTRABUS	CAN

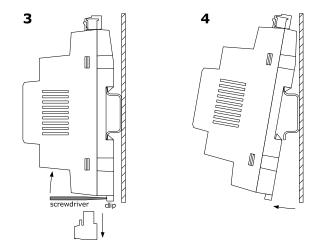
З РАЗМЕРЫ И УСТАНОВКА

3.1 Размеры и установка с-pro 3 nano HPRU


Размеры указаны в мм (дюймах). Для установки в панель предусмотрены защёлкивающиеся кронштейны. Толщина панели должна быть от 0,8 до 2,0 мм (от 1/32 до 1/16 дюйма).

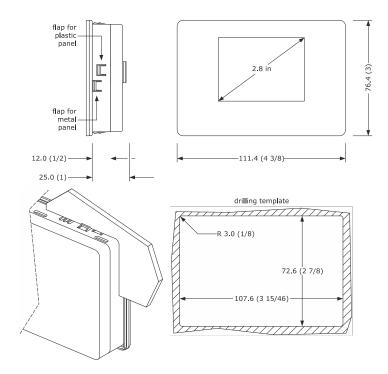

3.2 Размеры и установка EVDRIVE03/06 и EVD094

Размеры указаны в мм (дюймах). Устанавливаются на DIN-рейку.


Размер DIN-рейки должен быть 35.0×7.5 мм (1 $3/8 \times 5/16$) или 35.0×15.0 мм (1 $3/8 \times 9/16$).

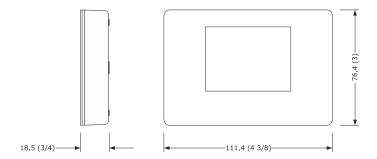
Для установки устройства действуйте, как показано на рисунках 1 и 2.

Чтобы снять устройство, сначала снимите все винтовые съемные клеммные колодки, установленные в нижней части, затем действуйте, как показано на рисунках 3 и 4.


Чтобы установить устройство снова, предварительно нажмите на зажим.

3.3 Размеры и установка EPJgraph

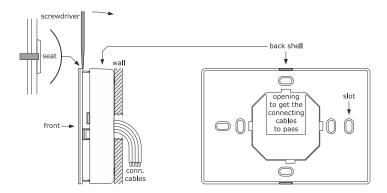
3.3.1 Модели для врезного монтажа


Размеры указаны в мм (дюймах). Крепится в панель с помощью эластичных фиксаторов.

Толщина металлической панели должна составлять от 0.8 до 1.5 мм (от 1/32 до 1/16 дюйма), а толщина пластиковой панели — от 0.8 до 3.4 мм (от 1/32 до 1/8 дюйма).

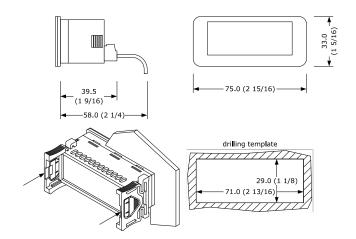
3.3.2 Модели для настенного монтажа

Размеры указаны в мм (дюймах). Крепление на стену (с помощью винтов и саморезов) или в наиболее распространённые монтажные коробки для скрытого монтажа (с помощью крепёжных винтов).


- 1. Отсоедините заднюю часть корпуса от передней части с помощью отвертки под посадочное место.
 - 2.1 В случае настенного монтажа:
 - 2.1.1 Прислоните заднюю часть корпуса к стене таким образом, чтобы соединительный кабель можно было пропустить через соответствующее отверстие.
 - 2.1.2 Используя пазы задней крышки в качестве шаблона, просверлите 4 отверстия, диаметр которых соответствует диаметру болта. Рекомендуется использовать болты диаметром 5,0 мм (3/16 дюйма).
 - 2.1.3 Вставьте болты в просверленные в стене отверстия.
 - 2.1.4 Закрепите заднюю часть корпуса на стене четырьмя винтами. Рекомендуется использовать винты с потайной головкой.

Страница 11из 141

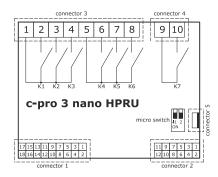
2.2 В случае монтажа коробки вровень с поверхностью закрепите заднюю часть корпуса внутри коробки четырьмя винтами.


Рекомендуется использовать винты с потайной головкой.

- 3. Выполните электрическое подключение, как показано в разделе *ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ*, не включая устройство.
- 4. Закрепите переднюю часть устройства на задней части корпуса.

3.4 Размеры и установка Vled 3

Размеры указаны в мм (дюймах). Для установки в панель предусмотрены защёлкивающиеся кронштейны. Толщина панели должна быть от 0,8 до 2,0 мм (от 1/32 до 1/16 дюйма).



МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ УСТАНОВКЕ

- Убедитесь, что условия работы соответствуют пределам, указанным в разделе *«ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ»*.
- Не устанавливайте устройство вблизи источников тепла, оборудования с сильным магнитным полем, в местах, подверженных воздействию прямых солнечных лучей, дождя, сырости, чрезмерной запыленности, механических вибраций или ударов.
- В соответствии с правилами техники безопасности устройство должно быть установлено надлежащим образом, обеспечивая надлежащую защиту от контакта с электрическими деталями. Все защитные детали должны быть закреплены таким образом, чтобы для их снятия требовался инструмент.

4 ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ

4.1 Электрическое подключение с-pro 3 nano HPRU

Обозначения разъемов.

Разъем 1

Nō	ОПИСАНИЕ
1	аналоговый вход 6
2	аналоговый вход 1
3	аналоговый вход 7
4	аналоговый вход 2
5	цифровой вход 1 (сухой контакт/для импульсных сигналов до 2 кГц)
6	аналоговый вход 3
7	цифровой вход 2 (сухой контакт/для импульсных сигналов до 2 кГц)
8	аналоговый вход 4
9	цифровой вход 3 (сухой контакт)
10	аналоговый вход 5
11	аналоговый выход 1
12	общий (GND)
13	аналоговый выход 2
14	порт INTRABUS
15	вспомогательный источник питания (12 В постоянного тока)
16	общий (GND)
17	питание устройства (12 В переменного тока или 24 В переменного/постоянного тока, в зависимости от модели). Если устройство питается от источника постоянного тока, полярность напряжения питания учитывать не обязательно.
18	питание устройства (12 В переменного тока или 24 В переменного/постоянного тока, в зависимости от модели). Если устройство питается от источника постоянного тока, полярность напряжения питания учитывать не обязательно.

Разъем 2

Nō	ОПИСАНИЕ
1	сигнал + master/slave порт RS-485 MODBUS
2	сигнал + САN-порт
3	сигнал - master/slave порт RS-485 MODBUS
4	сигнал - CAN-порт
5	питание ратиометрических датчиков 0-5 В (5 В постоянного тока)
6	общий (GND)
7	аналоговый выход 3
8	аналоговый выход 4
9	цифровой вход 4 (сухой контакт)
10	аналоговый вход 8
11	цифровой вход 5 (сухой контакт)
12	аналоговый вход 9

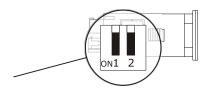
Разъем 3

Nō	ОПИСАНИЕ
1	общий контакт цифрового выхода К1, К2 и К3
2	цифровой выход К1, нормально открытый контакт (3 A res. при 250 В переменного тока)
3	цифровой выход K2, нормально открытый контакт (3 A res. при 250 В переменного тока)
4	цифровой выход КЗ нормально открытый контакт (3 A res. при 250 В переменного тока)
5	общий контакт цифрового выхода К4, К5 и К6
6	цифровой выход К4, нормально открытый контакт (3 A res. при 250 В переменного тока)
7	цифровой выход К5, нормально открытый контакт (3 A res. при 250 В переменного тока)
8	цифровой выход K6, нормально открытый контакт (3 A res. при 250 В переменного тока)

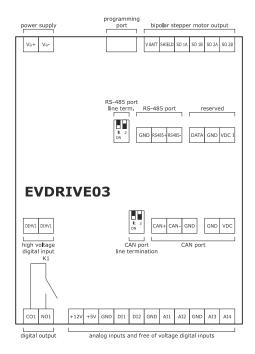
Разъем 4

Nō	ОПИСАНИЕ
1	общий контакт цифрового выхода К7
2	цифровой выход K7, нормально открытый контакт (3 A res. при 250 В переменного тока)

Разъем 5


USB-порт.

Разъем 6


Νō	ОПИСАНИЕ
1	общий (GND)
2	сигнал - CAN-порт
3	сигнал + САN-порт

Установка согласующего резистора сети RS-485 MODBUS, сети CAN

Для установки согласующего резистора сети RS-485 MODBUS установите микропереключатель 1 в положение «ВКЛ». Для установки согласующего резистора сети CAN установите микропереключатель 2 в положение «ВКЛ».

4.2 Электрическое подключение EVDRIVE03/06

Обозначения разъемов.

Цифровой выход

Клемма Значение	
CO1	общий контакт
NO1	цифровой выход с нормально разомкнутым контактом

Аналоговые входы и цифровые входы сухой контакт

Клемма	Значение
+12V	Питание преобразователей 0-20 мА / 4-20 мА / 0-10 В (12 В постоянного тока ±10%, макс. 60 мА)
+5V	Питание ратиометрических преобразователей 0-5 В (5 В постоянного тока $\pm 5\%$, 40 мА макс.)
GND	общий провод аналоговых входов и цифровых входов сухой контакт
DI1	цифровой вход 1 (сухой контакт, не оптоизолированный; 5 В без нагрузки, 3,3 мА под нагрузкой)
DI2	цифровой вход 2 (сухой контакт, не оптоизолированный; 5 В без нагрузки, 3,3 мА под нагрузкой)
GND	общие аналоговые входы и цифровые входы сухой контакт
AI1	аналоговый вход 1 (настраивается через параметр конфигурации для датчиков NTC/Pt 1000 и ратиометрических преобразователей 0-20 мA/4-20 мA/0-5 B)

AI2	аналоговый вход 2 (настраивается через параметр конфигурации для датчиков NTC/Pt 1000 и ратиометрических преобразователей 0-20 мA/4-20 мA/0-5 B)		
GND	общие аналоговые входы и цифровые входы сухой контакт		
AI3	аналоговый вход 3 (настраивается через параметр конфигурации для датчиков NTC/Pt 1000)		
AI4	аналоговый вход 4 (настраивается через параметр конфигурации для ратиометрических преобразователей 0-20 мA/4-20 мA/0-5 В и 0-10 В)		

CAN-порт

Клемма	Значение
CAN +	+ сигнал
CAN -	- сигнал
GND	земля

Клемма	Значение
GND	земля
VDC	Источник питания удаленного пользовательского интерфейса (2235 В постоянного тока, макс. 100 мА)

Согласующий резистор линии CAN-порта (недоступно для модели EPD4BX3/6)

Установите микропереключатель 1 в положение «Вкл.» (120 Ом Ω , 0,25 Вт) для подключения согласующего резистора порта CAN (включите согласующий резистор у первого и последнего элемента сети).

Порт программирования

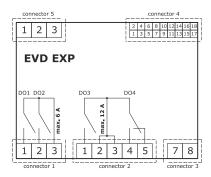
Порт обновления прошивки модуля.

Источник питания

Клемма	Значение
V ≅+	Линия электропитания (не изолированная; 24 В переменного тока $+10\%$ -15%, 50/60 Гц ±3 Гц, 40 ВА макс. или 2437 В постоянного тока, 22 Вт макс.)
V ≅-	Линия электропитания (не изолированная; 24 В переменного тока $+10\%$ -15%, 50/60 Гц ±3 Гц, 40 ВА макс. или 2437 В постоянного тока, 22 Вт макс.)

Не подключайте другие устройства к тому же трансформатору.

Порт RS-485 с протоколом связи MODBUS


Клемма	Значение
GND	земля
RS485+	сигнал А+
RS485-	сигнал В-

Согласующий резистор линии порта RS-485 (недоступно для модели EPD4BC3/6)

Подключите согласующий резистор порта RS-485 с протоколом связи MODBUS Slave (120 Ом Ω , 0,25 Вт); установите микропереключатель 1 в положение ВКЛ. для подключения согласующего резистора порта RS-485 (включите согласующий резистор у первого и последнего элемента сети).

4.3 Электрическое подключение EVD094

Обозначения разъемов.

Разъем 1

Nō	ОПИСАНИЕ
1	Цифровой выход DO1, нормально открытый контакт (3 A res. при 250 В переменного тока)
2	Цифровой выход DO2, нормально открытый контакт (3 A res. при 250 В переменного тока)
3	Общий контакт цифровых выходов DO1 и DO2

Разъем 2

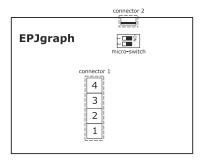
Nō	ОПИСАНИЕ
1	Цифровой выход DO3, нормально открытый контакт (12 A res. при 250 В переменного тока)
2	Общий контакт цифровых выходов DO3 и DO4
3	Общий контакт цифровых выходов DO3 и DO4
4	Цифровой выход DO4, нормально открытый контакт (8 A res. при 250 В переменного тока)
5	Цифровой выход DO4 нормально замкнутый контакт (8 A res. при 250 В переменного тока)

Разъем 3

Nō	ОПИСАНИЕ
7	электропитание устройства (115230 В переменного тока)
8	электропитание устройства (115230 В переменного тока)

Разъем 4

Nō	ОПИСАНИЕ
1	аналоговый выход АО2
2	аналоговый выход АО1
3	общий (GND)
4	аналоговый вход IN1
5	цифровой вход IN10 (сухой контакт)


6	аналоговый вход IN2
7	цифровой вход IN9 (сухой контакт и для импульсных сигналов)
8	аналоговый вход IN3
9	цифровой вход IN8 (сухой контакт и для импульсных сигналов)
10	аналоговый вход IN4
11	аналоговый вход IN7
12	аналоговый вход IN5
13	общий (GND)
14	аналоговый вход IN6
15	зарезервирован
16	вспомогательный источник питания (12 В постоянного тока, макс. 40 мА)
17	выход открытого коллектора ОС1 (12 B, макс. 40 мА)
18	общий (GND)

Разъем 5

	Νō	ОПИСАНИЕ
	1	общий (GND)
	2	Порт INTRABUS
_	3	питание EV3K11 или EVJ LCD (12 В постоянного тока)

4.4 Электрическое соединение EPJgraph

4.4.1 Модели для врезного монтажа

Обозначения разъемов.

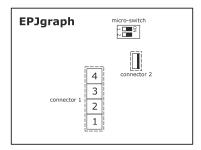
Разъем 1

Nō	ОПИСАНИЕ
1	порт CAN -
2	порт САМ +
3	Питание устройства (24 В переменного тока/1230 В постоянного тока). Если устройство питается от источника постоянного тока, подключите клемму «минус».
4	Питание устройства (24 В переменного тока/1230 В постоянного тока). Если устройство питается от источника постоянного тока, подключите клемму «плюс».

Не подключайте другие устройства к тому же трансформатору.

Разъем 2

Зарезервировано EVCO.


Микропереключатель для включения оконечного резистора CAN-порта.

Установка согласующего резистора порта CAN

Чтобы добавить согласующий резистор порта CAN , установите микропереключатель 2 в положение «ВКЛ». Микропереключатель 1 зарезервирован для EVCO.

Микропереключатель находится за задней панелью устройства (предварительно снимите заднюю панель).

4.4.2 Модели для настенного монтажа

Обозначения разъемов.

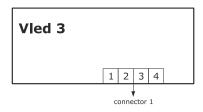
Разъем 1

Nō	ОПИСАНИЕ
1	порт CAN -
2	порт САМ +
3	Питание устройства (24 В переменного тока/1230 В постоянного тока). Если устройство питается от источника постоянного тока, подключите клемму «минус».
4	Питание устройства (24 В переменного тока/1230 В постоянного тока). Если устройство питается от источника постоянного тока, подключите клемму «плюс».

Не подключайте другие устройства к тому же трансформатору.

Разъем 2

Зарезервировано EVCO.


Микропереключатель для включения согласующего резистора CAN-порта.

Установка согласующего резистора порта CAN

Чтобы добавить согласующий резистор порта CAN , установите микропереключатель 2 в положение «ВКЛ». Микропереключатель 1 зарезервирован для EVCO.

Микропереключатель находится за задней панелью устройства (предварительно снимите заднюю панель).

4.5 Электрическое подключение Vled 3

Обозначения разъемов.

Разъем 1

Nō	ОПИСАНИЕ
1	источник питания устройства (12 В переменного/постоянного тока); если устройство питается от
	источника постоянного тока, на клемму подключается плюс
2	не используется
3	сигнал порта INTRABUS
4	GND питания устройства и GND для порта INTRABUS

Не подключайте другие устройства к тому же трансформатору.

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ ЭЛЕКТРИЧЕСКОМ ПОДКЛЮЧЕНИИ

- Используйте кабели соответствующего сечения для протекающего по ним тока.
- Для уменьшения электромагнитных помех подключите кабели питания как можно дальше от сигнальных кабелей и подключитесь к сети CAN с помощью витой пары.
- При использовании электрической или пневматической отвертки отрегулируйте момент затяжки.
- Если устройство было перенесено из холода в теплое место, внутри из-за влажности мог образоваться конденсат. Подождите около часа, прежде чем включать устройство.
- Убедитесь, что напряжение, частота и мощность электросети соответствуют установленным значениям (см. раздел «ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ»).
- Перед выполнением любого вида технического обслуживания отключите электропитание.
- Не используйте устройство в качестве средства защиты.

5 ТАБЛИЦЫ КОНФИГУРАЦИИ ВХОДОВ/ВЫХОДОВ

5.1 Таблица конфигурации входов/выходов для c-pro 3 nano HPRU без управления контуром ГВС

Вход/выход	Описание	
	Аналоговые входы	
AI 1	Температура обратки потребителя	
AI 2	Наружная температура	
AI 3	Температура подачи потребителю	
AI 4	Температура бака горячей воды	
AI 5	Температура теплообменника	
AI 6		Не используется
AI 7		Не используется
AI 8		Не используется
AI 9		Не используется
AI 10 (EVDRIVE03/06)	Давление конденсации	
AI 11 (EVDRIVE03/06)	Температура нагнетания компрессора	
AI 12 (EVDRIVE03/06)	Температура всасывания компрессора	
AI 13 (EVDRIVE03/06)	Давление испарения	
АІ1 (Расширение)		Не используется
AI2 (Расширение)		Не используется
АІЗ (Расширение)		Не используется
AI4 (Расширение)		Не используется
AI5 (Расширение)		Не используется
АІб (Расширение)		Не используется
АІ7 (Расширение)		Не используется
	Последовательные порты	
RS-485	Протокол MODBUS RTU	
CANbus	Для EPJgraph и EVDRIVE03/06	
Intrabus	Для Vled 3 и EVD094	
	Цифровые входы	
DI 1	Реле потока теплоносителя	
DI 2	Авария бойлера	
DI 3	Термозащита вентилятора	
DI 4	Лето/Зима	

D12 (Расширение) Не испол D13 (Расширение) Не испол Aналоговые выходы AO 1 AO 2 Компрессор AO 3 Не испол AO 4 Не испол AO 1 (Расширение) Не испол DO 2 (Расширение) Не испол DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не испол DO 8 (EVDRIVEO3/06) Электромагнитный клапан DO 1 (Расширение) Не испол DO 2 (Расширение) Не испол	
D1 7 (EVDRIVEO3/06) Низкое давление D1 8 (EVDRIVEO3/06) Термозащита компрессора D11 (Расширение) Не исполнительной выходы Aналоговые выходы Не исполнительной выходы AO 1 Вентилятор AO 2 Компрессор AO 3 Не исполнительной выходы AO 1 (Расширение) Не исполнительной выходы DO 1 Насос теплоносителя потребителя DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исполнительной клапан DO 1 (Расширение) Электромагнитный клапан DO 1 (Расширение) Не исполнительной клапан DO 2 (Расширение) Не исполнительной клапан	
DI 8 (EVDRIVE03/06) DI (Расширение) DI (Расширение) He исло Aналоговые выходы AO 1 Bентилятор AO 2 Компрессор AO 3 He исло AO 1 (Расширение) He исло AO 1 (Расширение) DI (Расширение) He исло He исло He исло He исло He исло DI (Расширение) He исло He исло DI (Расширение) He исло DI (Расширение) He исло DI (Расширение)	
D11 (Расширение) Не испо D12 (Расширение) Не испо D13 (Расширение) Не испо AHалоговые выходы Не испо AO 1 Вентилятор AO 2 Компрессор AO 3 Не испо AO 1 (Расширение) Не испо AO 2 (Расширение) Не испо D0 1 Насос теплоносителя потребителя D0 2 Вентилятор D0 3 Реверсивный клапан D0 4 Бойлер D0 5 Насос теплоносителя источника D0 6 Компрессор D0 7 Не испо D0 8 (EVDRIVEO3/06) Электромагнитный клапан D0 1 (Расширение) Не испо D0 2 (Расширение) Не испо	
D12 (Расширение) Не испол D13 (Расширение) Не испол Аналоговые выходы АО 1 AO 2 Компрессор AO 3 Не испол AO 4 Не испол AO 1 (Расширение) Не испол AO 2 (Расширение) Не испол DO 1 Насос теплоносителя потребителя DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не испол DO 8 (EVDRIVEO3/06) Электромагнитный клапан DO 1 (Расширение) Не испол DO 2 (Расширение) Не испол	
D13 (Расширение) Не исполнятор AO 1 Вентилятор AO 2 Компрессор AO 3 Не исполнятор AO 4 Не исполнятор AO 1 (Расширение) Не исполнятор BO 1 Насос теплоносителя потребителя DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исполнятитьый клапан DO 1 (Расширение) Электромагнитный клапан DO 2 (Расширение) Не исполнять исполнят	ользуется
Аналоговые выходы АО 1 Вентилятор АО 2 Компрессор АО 3 Не исполня и полько и пол	ользуется
АО 1 Вентилятор АО 2 Компрессор АО 3 Не исполняюте и и	ользуется
АО 2 Компрессор АО 3 Не исполняющий и полькой и поль	
АО 3 АО 4 Не исло АО 1 (Расширение) Не исло АО 2 (Расширение) Не исло	
АО 4 Не испол АО 1 (Расширение) Не испол АО 2 (Расширение) Не испол	
АО 1 (Расширение) ———————————————————————————————————	ользуется
AO 2 (Расширение) Не исполня Uифровые выходы Вентилятор DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не испольный клапан DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не испольный клапан DO 2 (Расширение) Не испольный клапан	ользуется
Цифровые выходы D0 1 Насос теплоносителя потребителя D0 2 Вентилятор D0 3 Реверсивный клапан D0 4 Бойлер D0 5 Насос теплоносителя источника D0 6 Компрессор D0 7 Не испольносителя источника D0 8 (EVDRIVE03/06) Электромагнитный клапан D0 1 (Расширение) Не испольносителя источника D0 2 (Расширение) Не испольносителя источника	ользуется
DO 1 Насос теплоносителя потребителя DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не испольносителя источника DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не испольносителя источника DO 2 (Расширение) Не испольносителя источника	ользуется
DO 2 Вентилятор DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исло DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исло DO 2 (Расширение) Не исло	
DO 3 Реверсивный клапан DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исполнять и клапан DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исполнять и клапан DO 2 (Расширение) Не исполнять и клапан	
DO 4 Бойлер DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исполнитный клапан DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исполнитный клапан DO 2 (Расширение) Не исполнитный клапан	
DO 5 Насос теплоносителя источника DO 6 Компрессор DO 7 Не исполнитный клапан DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исполнителя источника Не исполнителя источника Не исполнителя источника	
DO 6 Компрессор DO 7 Не исположения DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исположения DO 2 (Расширение) Не исположения	
DO 7 DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не испо	
DO 8 (EVDRIVE03/06) Электромагнитный клапан DO 1 (Расширение) Не исполнительный клапан DO 2 (Расширение) Не исполнительный клапан	
DO 1 (Расширение) He испо	
DO 2 (Расширение) Не испо	ользуется
	эльзуется
	ользуется
DO 3 (Расширение) He испо	,
DO 4 (Расширение) He испо	ользуется
DO OC (Расширение) Не испо	ользуется

5.2 Таблица конфигурации входов/выходов для c-pro 3 nano HPRU с управлением контуром ГВС

Вход/выход	Описание	
	Аналоговые входы	
AI 1	Температура обратки потребителя	
AI 2	Наружная температура	
AI 3	Температура 1 теплообменника	
AI 4	Температура подачи потребителю	
AI 5		Не используется
AI 6	Температура в верхней части бака горячей воды	
AI 7	Температура в нижней части бака горячей воды	
AI 8	Температура на выходе солнечных панелей	
AI 9	Температура на входе солнечных панелей	
AI 10 (EVDRIVE03/06)	Давление конденсации	
AI 11 (EVDRIVE03/06)	Температура нагнетания компрессора	
AI 12 (EVDRIVE03/06)	Температура всасывания компрессора	
AI 13 (EVDRIVE03/06)	Давление испарения	
AI 1 (Расширение)		Не используется
AI 2 (Расширение)		Не используется
AI 3 (Расширение)		Не используется
AI 4 (Расширение)		Не используется
AI 5 (Расширение)		Не используется
AI 6 (Расширение)		Не используется
АІ 7 (Расширение)		Не используется
	Последовательные порты	
RS-485	Протокол MODBUS RTU	
CANbus	Для EPJgraph и EVDRIVE03	
Intrabus	Для Vled 3 и EVD094	
	Цифровые входы	
DI 1	Реле потока теплоносителя	
DI 2	Авария котла	
DI 3	Термозащита вентилятора	
DI 4	Лето/Зима	
DI 5	Пуск/Стоп	

DI 10 (EVDRIVE03/06)	Высокое давление	
DI 11 (EVDRIVE03/06)	Низкое давление	
DI 12 (EVDRIVE03/06)	Защита компрессора	
DI 1 (Расширение)		Не используется
DI 2 (Расширение)		Не используется
DI 3 (Расширение)		Не используется
	Аналоговые выходы	
AO 1	Вентилятор	
AO 2	Компрессор	
AO 3		Не используется
AO 4		Не используется
АО 1 (Расширение)		Не используется
АО 2 (Расширение)		Не используется
	Цифровые выходы	
DO 1	Насос теплоносителя потребителя	
DO 2	Вентилятор	
DO 3	Реверсивный клапан	
DO 4	Бойлер	
DO 5	Авария	
DO 6	Компрессор	
DO 7	Клапан ГВС	
DO 8 (EVDRIVE03/06)	Электромагнитный клапан	
DO 1 (Расширение)		Не используется
DO 2 (Расширение)		Не используется
DO 3 (Расширение)		Не используется
DO 4 (Расширение)		Не используется
DO OC (Расширение)		Не используется
ВО ОС (гасширение)		THE VICTORIBAYETEN

6 НАСТРОЙКА ВХОДОВ/ВЫХОДОВ

Таблицы в предыдущих разделах показывают пример конфигурации входов-выходов по умолчанию, но это не единственная возможная конфигурация.

Определен набор возможных допустимых значений параметров, которые используются мастером.

6.1 Конфигурирование входов/выходов для с-pro 3 nano HPRU

Значение	Описание
0	Отключен
1	Температура на входе потребителя
2	Температура на выходе потребителя
3	Верхний уровень бака ГВС
4	Нижний уровень бака ГВС
5	Наружная температура
6	Температура теплообменника 1
7	Температура теплообменника 2
8	Температура на входе источника
9	Температура на выходе источника
10	Температура на входе солнечных панелей
11	Температура на выходе солнечных панелей
12	Температура нагнетания компрессора
13	Датчик дополнительный 1 (NTC)
14	Датчик дополнительный 2 (NTC)
15	Давление конденсатора (4-20 мА)
16	Давление конденсатора (0-5 В)
17	Давление испарителя (4-20 мА)
18	Давление испарителя (0-5 В)
19	Датчик дополнительный 1 (4-20 мА)
20	Датчик дополнительный 1 (0-5 В)
21	Датчик дополнительный 1 (0-10 В)
22	Датчик дополнительный 2 (4-20 мА)
23	Датчик дополнительный 2 (0-5 В)
24	Датчик дополнительный 2 (0-10 В)
25	Ограничение мощности (4-20 мА)
26	Ограничение мощности (0-5 В)

27	Ограничение мощности (0-10 В)
28	Реле потока насоса потребителя NC
29	Реле потока насоса потребителя NO
30	Защита насоса потребителя NC
31	Защита насоса потребителя NO
32	Реле потока насоса потребителя + защита NC
33	Реле потока насоса потребителя + защита NO
34	Авария бойлера NC
35	Авария бойлера NO
36	Защита бойлера NC
37	Защита бойлера NO
38	Авария бойлера + защита NC
39	Авария бойлера + защита NO
40	Вентиляторы 1 защита NC
41	Вентиляторы 1 защита NO
42	Защита ГВС NC
43	Защита ГВС NO
44	Реле потока насоса солнечных панелей + защита NC
45	Реле потока насоса солнечных панелей + защита NO
46	Пуск/Стоп NC
47	Пуск/Стоп NO
48	Лето-Зима NC
49	Лето-Зима NO
50	Режим ГВС NC
51	Режим ГВС NO
52	Высокое давление авария NC
53	Высокое давление авария NO
54	Низкое давление авария NC
55	Низкое давление авария NO
56	Защита компрессора 1 NC
57	Защита компрессора 1 NO
58	Защита компрессора 2 NC
59	Защита компрессора 2 NO
60	Защита компрессора 3 NC

61	Защита компрессора 3 NO
62	КОМПРЕССОРЫ - защита NC
63	КОМПРЕССОРЫ - защита NO
64	Защита насоса источника NC
65	Защита насоса источника NO
66	Дополнительный 1 NC
67	Дополнительный 1 NO
68	Дополнительный 2 NC
69	Дополнительный 2 NO
70	Реле фаз NC
71	Реле фаз NO
72	Следующая уставка NC
73	Следующая уставка NO
74	Защита вентилятора 2 NC
75	Защита вентилятора 2 NO
76	Вспомогательная авария 1 NC
77	Вспомогательная авария 1 NO
78	Вспомогательная авария 2 NC
79	Вспомогательная авария 2 NO
80	Уровень воды NC
81	Уровень воды NO

Аналоговые входы (AI) (AI3, AI4, AI5, AI6 и AI7) (на расширении AI3, AI4, AI5, AI6, AI7) Значение Описание 0 Отключен 1 Температура на входе потребителя 2 Температура на выходе потребителя 3 Верхний уровень ГВС 4 Нижний уровень ГВС 5 Наружная температура 6 Температура теплообменника 1 7 Температура теплообменника 2 8 Температура на входе источника 9 Температура на выходе источника 10 Температура на входе солнечных панелей

11	Температура на выходе солнечных панелей
12	Температура нагнетания компрессора
13	Датчик дополнительный 1 (NTC)
14	Датчик дополнительный 2 (NTC)
15	Реле потока насоса потребителя NC
16	Реле потока насоса потребителя NO
17	Защита насоса потребителя NC
18	Защита насоса потребителя NO
19	Реле потока насоса потребителя + защита NC
20	Реле потока насоса потребителя + защита NO
21	Авария бойлера NC
22	Авария бойлера NO
23	Защита бойлера NC
24	Защита бойлера NO
25	Авария бойлера + защита NC
26	Авария бойлера + защита NO
27	Вентиляторы 1 защита NC
28	Вентиляторы 1 защита NO
29	Защита ГВС NC
30	Защита ГВС NO
31	Реле потока насоса солнечных панелей + защита NC
32	Реле потока насоса солнечных панелей + защита NO
33	Пуск/Стоп NC
34	Пуск/Стоп NO
35	Лето-Зима NC
36	Лето-Зима NO
37	Режим ГВС NC
38	Режим ГВС NO
39	Высокое давление авария NC
40	Высокое давление авария NO
41	Низкое давление авария NC
42	Низкое давление авария NO
43	Защита компрессора 1 NC
44	Защита компрессора 1 NO
_	

45	Защита компрессора 2 NC
46	Защита компрессора 2 NO
47	Защита компрессора 3 NC
48	Защита компрессора 3 NO
49	КОМПРЕССОРЫ - защита NC
50	КОМПРЕССОРЫ - защита NO
51	Защита насоса источника NC
52	Защита насоса источника NO
53	Дополнительный 1 NC
54	Дополнительный 1 NO
55	Дополнительный 2 NC
56	Дополнительный 2 NO
57	Реле фаз NC
58	Реле фаз NO
59	Следующая уставка NC
60	Следующая уставка NO
61	Защита вентилятора 2 NC
62	Защита вентилятора 2 NO
63	Вспомогательная авария 1 NC
64	Вспомогательная авария 1 NO
65	Вспомогательная авария 2 NC
66	Вспомогательная авария 2 NO
67	Уровень воды NC
68	Уровень воды NO
	Hudnophie Byonhi (DT)

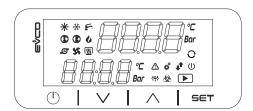
Цифровые входы (DI)		
Значение	Описание	
0	Отключен	
1	Реле потока насоса потребителя NC	
2	Реле потока насоса потребителя NO	
3	Защита насоса потребителя NC	
4	Защита насоса потребителя NO	
5	Реле потока насоса потребителя + защита NC	
6	Реле потока насоса потребителя + защита NO	
7	Авария бойлера NC	

8	Авария бойлера NO
9	Защита бойлера NC
10	Защита бойлера NO
11	Авария бойлера + защита NC
12	Авария бойлера + защита NO
13	Вентиляторы 1 защита NC
14	Вентиляторы 1 защита NO
15	Защита ГВС NC
16	Защита ГВС NO
17	Реле потока насоса солнечных панелей + защита NC
18	Реле потока насоса солнечных панелей + защита NO
19	Пуск/Стоп NC
20	Пуск/Стоп NO
21	Лето-Зима NC
22	Лето-Зима NO
23	Режим ГВС NC
24	Режим ГВС NO
25	Высокое давление авария NC
26	Высокое давление авария NO
27	Низкое давление авария NC
28	Низкое давление авария NO
29	Защита компрессора 1 NC
30	Защита компрессора 1 NO
31	Защита компрессора 2 NC
32	Защита компрессора 2 NO
33	Защита компрессора 3 NC
34	Защита компрессора 3 NO
35	КОМПРЕССОРЫ - защита NC
36	КОМПРЕССОРЫ - защита NO
37	Защита насоса источника NC
38	Защита насоса источника NO
39	Дополнительный 1 NC
40	Дополнительный 1 NO
41	Дополнительный 2 NC

42	Дополнительный 2 NO
43	Реле фаз NC
44	Реле фаз NO
45	Следующая уставка NC
46	Следующая уставка NO
47	Защита вентилятора 2 NC
48	Защита вентилятора 2 NO
49	Вспомогательная авария 1 NC
50	Вспомогательная авария 1 NO
51	Вспомогательная авария 2 NC
52	Вспомогательная авария 2 NO
53	Уровень воды NC
54	Уровень воды NO

	Аналоговые выходы (AO) (AO1 и AO2) (Расширение AO1 и AO2)	
Значение	Описание	
0	Отключен	
1	Вентилятор 0-10 В	
2	Компрессор 0-10 В	
3	ШИМ вентилятора	
4	Сигнал фазорезки вентилятора	
5	Нагреватели антизамерзания поддона конденсата 0-10 В	
6	Дополнительный 1 0-10 В	
7	Дополнительный 2 0-10 В	

Аналоговые выходы (АО) (АОЗ и АО4)		
Значение	Описание	
0	Отключен	
1	Вентилятор 0-10 В	
2	Компрессор 0-10 В	
3	Компрессор 4-20 мА	
4	Нагреватели антизамерзания поддона конденсата 0-10 В	
5	Нагреватели антизамерзания поддона конденсата 4-20 мА	
6	Дополнительный 1 0-10 В	
7	Дополнительный 1 4-20 мА	
8	Дополнительный 2 0-10 В	

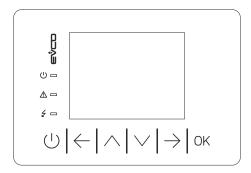

9 Дополнительный 2 4-20 мА

	Цифровые выходы (DO)
Значение	Описание
0	Отключен
1	Насос потребителя
2	Вентилятор 1
3	Насос источника
4	Реверсивный клапан NC
5	Реверсивный клапан NO
6	Бойлер
7	Встроенные нагреватели
8	Встроенные нагреватели ГВС
9	Общая авария NC
10	Общая авария NO
11	3-ходовой клапан ГВС
12	Компрессор 1 (включение)
13	Компрессор 2
14	Компрессор 3
15	Насос солнечных панелей
16	Клапан байпаса компрессора NC
17	Клапан байпаса компрессора NO
18	Нагреватели антизамерзания
19	Нагреватели антизамерзания поддона конденсата
20	Дополнительный 1 NC
21	Дополнительный 1 NO
22	Дополнительный 2 NC
23	Дополнительный 2 NO
24	Клапан с электроприводом для отключения системы NC
25	Клапан с электроприводом для отключения системы НЕТ
26	Соленоидный клапан NC
27	Соленоидный клапан NO
28	Вентилятор 2

7 ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС

7.1 Пользовательский интерфейс c-pro 3 nano HPRU и Vled 3

Пользовательский интерфейс состоит из двухстрочного дисплея и 4 клавиш.



В следующей таблице описано назначение клавиатуры.

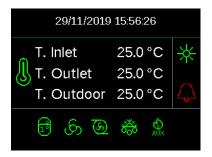
K	юпка	Определенная функция
I	(h)	включение/выключение, далее именуемое «ВКЛ/ОТКЛ»
	\vee	клавиша уменьшения, далее называемая «ВНИЗ»
Ī	\wedge	клавиша увеличения, далее называемая «ВВЕРХ»
	SET	клавиша подтверждения, далее называемая «ВВОД»

7.2 Пользовательский интерфейс EPJgraph

Пользовательский интерфейс состоит из цветного ЖК-графического дисплея и 6 клавиш.

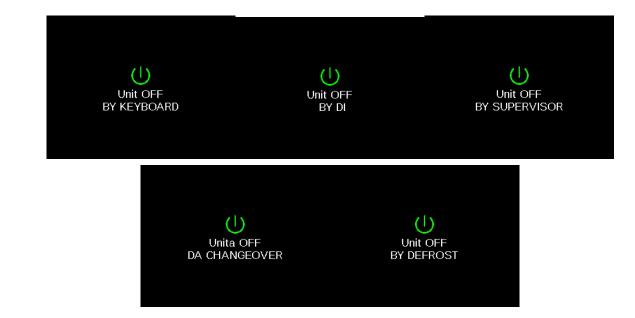
В следующей таблице описано назначение клавиатуры.

Кнопка	Определенная функция
υ	включение/выключение, далее именуемое «ВКЛ/ОТКЛ»
←	смещение влево, далее называемое также «ВЛЕВО»
1 ^ 1	клавиша увеличения, далее называемая «ВВЕРХ»
\	клавиша уменьшения, далее называемая «ВНИЗ»
>	смещение вправо, далее называемое также «ВПРАВО»
ok	клавиша подтверждения, далее называемая «ВВОД»

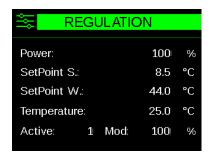

8 СТРУКТУРА МЕНЮ И ПОДМЕНЮ

В этом разделе представлены основные страницы и меню, присутствующие в приложении.

8.1 Страницы EPJgraph


Главная страница EPJgraph меняется в зависимости от статуса устройства.

Если устройство включено, на дисплее отображаются значения температуры. Если датчик неисправен (или отключён), на дисплее отображается « ---- ».


- 1. Согласно параметру РН41 значение меняется 🔭 Лето / 💥 Зима / Тревога
- 2. Включен вентилятор
- 3. Включен 1-й компрессор / Включен 2-й компрессор / Включен 3-й компрессор. Мигает при ожидании времени защиты.
- 4. Включен насос.
- 5. Размораживание активно.
- 6. Вспомогательный обогрев активен.
- 7. Активно горячее водоснабжение.

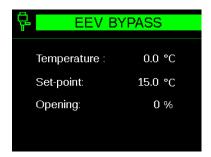
Если блок выключен, отображается сообщение «Unit OFF». При этом указывается причина отключения (с клавиатуры, отсутствие авторизации через цифровой вход, отсутствие авторизации через мониторинг и т. д.).


Нажимая клавиши ВПРАВО или ВЛЕВО с главной страницы (при включенном агрегате), можно вывести информацию о регулировании, о датчиках и т.д.

Страница управления

Отображает подаваемую мощность, летнюю и зимнюю уставки, регулируемую температуру и количество включенных компрессоров с относительной модуляцией.

Страница компрессора


Показывает состояние компрессоров.

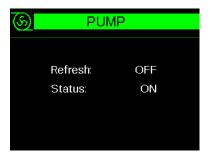
Страница перегрева EEV

Отображает состояние клапана перегрева, а также относительное значение, уставку и положение клапана.

Страница байпаса EEV

При наличии перепускного клапана будет отображаться температура всасывания, а также уставка и положение клапана.

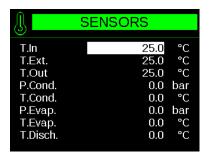
Страница вентилятора


Показывает состояние вентилятора и относительные значения высокого/низкого давления.

Страница оттайки

Отображает температуры начала/остановки оттаивания, заданное значение оттаивания, статус оттаивания и счетчики.

Страница насоса


Отображает состояние насоса и информацию о цикле проверки системы.

Страница вспомогательных функций регулирования

Отображает информацию о вспомогательных датчиках и дополнительных уставках.

Страница датчиков

Показывает информацию о датчиках:

Т.Іп. температура на входе, Т.Ехt. температура наружного воздуха, Т.Оut температура на выходе, Р.Сond. давление конденсации, Т.Сond. температура конденсации, Р.Еvap. давление испарения, Т.Еvap. температура испарения, Т.Disch. температура нагнетания, Т.Suc. температура всасывания, Т.Coil1 температура теплообменника 1, Т.Coil2 температура теплообменника 2, Т.In(PS) температура на входе солнечных панелей, Т.Out(PS) температура на выходе солнечных панелей, Т.In(S) температура на входе солнечного коллектора, Т.Out(S) температура на выходе солнечного коллектора, Т.DHW(A) температура верха бака ГВС, Т.DHW(B) температура низа бака ГВС, AUX1 вспомогательный датчик 1, AUX2 вспомогательный датчик 2, LIM.POW. ограничение мощности.

8.2 Главное меню

Главное меню разделено на 4 категории:

- Operating status (Рабочее состояние)
- Parameters (Параметры)
- Input Output (Вход Выход)
- Alarms (Аварии)

8.2.1 Рабочее состояние

Состояние всех функций и нагрузок указано в меню рабочего состояния:

- Compressors (Компрессоры)
- Exchangers (Теплообменники) (насосы и вентиляторы)
- Domestic hot water (Горячее водоснабжение)
- Defrosting (Оттайка)
- Solar panels (Солнечные панели)
- Aux. heating (Вспомогательное отопление)
- Electronic valve (ЭРВ)

Рабочее состояние выбранной функции можно найти внутри каждого элемента.

8.2.2 Параметры

В меню параметров можно получить доступ к различным уровням управления: от уровня 0 до уровня 3. Уровень 0 — это уровень пользователя, для которого пароль не требуется, а для уровней 1, 2 и 3 пароль требуется. Пункты меню следующие:

- User (Пользователь (уровень 0))
- Maintenance technician (Техник по обслуживанию (уровень 1))
- Installer (Установщик (уровень 2))
- Manufacturer (Производитель (уровень 3))

Подменю для этих пунктов следующее:

- · Parameters Menu (Меню параметров)
 - User (Пользователь) (**UT**)
 - · Maintenance technician (Техник по обслуживанию) (МА)
 - o Operating section (Раздел работы)
 - о Manual section (Раздел ручного управления)
 - o Calibration section (Раздел калибровки)
 - o Input/output section (Раздел ввода/вывода)
 - Installer (Установщик) (**IS**)
 - o Compressor section (Раздел компрессоров)
 - о Regulations section (Раздел регулирования)
 - о Exchangers section (Раздел теплообменников)
 - o Defrost section (Раздел оттайки)
 - o Pumps section (Раздел Насосы)
 - o Anti-legionella section (Раздел Антилегионелла)
 - о Aux. heating section (Раздел дополнительных нагревателей)
 - о Aux. section (Раздел дополнительно)
 - о Safety devices section (Раздел обеспечения безопасности (аварии))
 - о Various section (Раздел дополнительное (другие параметры))
 - о Default section (Установки по умолчанию)
 - o MODBUS section (Раздел MODBUS)
 - · Manufacturer (Производитель) (**CO**)
 - o Settings section (Раздел настроек)
 - о I/O section (Раздел ввода/вывода)
 - o Compressors section (Раздел компрессоров)
 - \circ Regulations section (Раздел регулирования)
 - o Exchanger section (Раздел теплообменника)
 - o Defrosting section (Раздел оттайки)
 - o Pumps section (Раздел Насосы)
 - o Anti-legionella section (Раздел Антилегионелла)
 - о Aux. heating section (Раздел дополнительных нагревателей)
 - o EVCM section (Раздел ЭРВ)
 - о EVD bypass section (Раздел байпаса ЭРВ)
 - o Safety devices section (alarms) (Раздел обеспечения безопасности (аварии))
 - o Various section (Раздел дополнительное (другие параметры))

Содержание каждого подменю см. в списке параметров. Принадлежность конкретного параметра (меню «Установщик», а не меню «Производитель») зависит от уровня пароля, связанного с самим параметром.

8.2.3 Вход Выход

Это меню содержит список входов и выходов, разделенных по типу, а также описание и статус. Пример:

Ввод/вывод	Описание	Логический статус	Физическое состояние
D001	Насос потребителя	Активный	Закрыто

8.2.4 Аварии

Меню аварий разделено на 2 подменю:

- Активные сигналы
- Журнал

Все активные сигналы аварий будут представлены в подменю активных сигналов аварий, а последние сигналы аварий будут перечислены в журнале.

9 УПРАВЛЕНИЕ

Контроллер может управлять реверсивными тепловыми насосами со следующими характеристиками:

- Теплообменник с воздушным или водяным источником
- Управление функцией ГВС
- Интегрированное управление электронным термостатическим клапаном
- Управление компрессором BLDC (с бесщеточным двигателем постоянного тока)
- Управление 1-3 компрессорами ON-OFF
- Управление адаптивным оттаиванием.

9.1 Управление рабочим статусом

Существуют различные способы включения и выключения машины, а также изменения режима ее работы на основе соответствующих параметров конфигурации.

9.1.1 Включение и выключение

Машину можно включать и выключать:

- С клавиатуры (вход в соответствующее меню или нажатие клавиши Esc в течение 2 секунд)
- С цифрового входа
- От BMS (система мониторинга) (из-за отсутствия связи по истечении настраиваемой задержки устройство переходит в режим «автономный», сохраняя при этом прежнее рабочее состояние).

Помимо возможности включения/выключения машины с клавиатуры, которая всегда доступна, включение/выключение может осуществляться дистанционно, через DI или BMS. Одна возможность исключает другую.

9.1.2 Изменение режима работы

Машина имеет 3 режима работы

- Холод
- Тепло
- Только для ГВС, полезно в межсезонье.

Может быть изменено с клавиатуры, DI, BMS (автономно по истечении заданного времени и с сохранением состояния при отсутствии связи), внешнего датчика температуры, регулирующего датчика или вспомогательного датчика. В этом случае также всегда будет возможно изменить рабочее состояние с клавиатуры, но другие режимы будут взаимоисключающими.

Время выключения машины будет установлено до вступления в силу смены сезона.

9.2 Регулировка тепла

Контроллер позволяет управлять до 3 компрессоров и источником вспомогательного нагрева (котлом или электрическим нагревателем), который также может работать по принципу «включено-выключено» или модулироваться. Вспомогательный нагреватель может быть единственным источником тепла или подключаться, когда компрессоры не справляются с потребностями системы в тепле.

В каждом случае определяются рабочая уставка (дифференцированная для функций нагрева и охлаждения), пропорциональный диапазон (боковая зона или нейтральная зона) и возможное время интегрирования (только для модулирующего регулирования). Также определяется смещение относительно уставки (ниже уставки в режиме охлаждения, выше уставки в режиме нагрева) для отключения компрессора, чтобы предотвратить «рывки» при регулировании по выходной температуре.

9.2.1 Компрессоры ON-OFF

Активация отдельного компрессора или двух или трёх компрессоров зависит от температуры, считываемой датчиками терморегулирования, и может осуществляться в нейтральной зоне, в боковой полосе или в режиме модуляции. В случае модуляционного компрессора регулирование может быть чисто пропорциональным или ПИ-регулятором. При наличии первого модуляционного компрессора и второго двухпозиционного компрессора регулирование будет пилообразным для модуляционного компрессора и в боковой полосе для двухпозиционного компрессора.

В случае агрегата с 2 или 3 компрессорами ON-OFF необходимо также управлять чередованием компрессоров; см. соответствующий параграф.

9.2.1.1 Регулировка ON-OFF в нейтральной зоне

Этот тип регулирования используется по умолчанию, когда регулирование тепла основано на температуре на выходе теплового насоса. Параметр определяет положение нейтральной зоны регулирования:

- Выше или ниже заданного значения в зависимости от активной функции
- Преодоление заданного значения

Для пояснения принципа работы необходимо различать фазы включения и выключения.

В режиме включения:

• Компрессор включается, когда температура регулирования выходит из нейтральной зоны:

✓ Охлаждение: Регулировка температуры > Уставка + Нейтральная зона
 ✓ Отопление: Регулировка температуры < Уставка - Нейтральная зона

• Компрессор остается выключенным, если регулируемая температура остается в пределах нейтральной зоны или если:

✓ Охлаждение: Регулировка температуры < заданного значения</p>

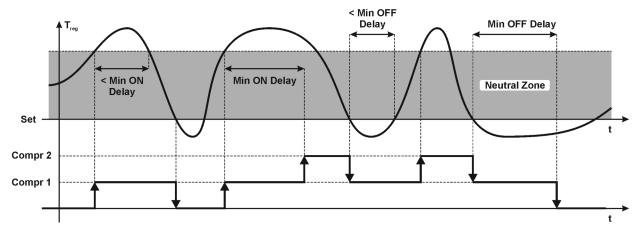
✓ Отопление: Регулировка температуры > Уставка

Любой второй компрессор не включается сразу после первого, даже если температура остается за пределами нейтральной зоны, а будет соблюдаться задержка, определяемая параметром.

В выключенном режиме:

• Компрессор выключается при достижении регулируемой температуры:

✓ Охлаждение: Регулировка температуры < заданного значения</p>


✓ Отопление: Регулировка температуры > Уставка

• Компрессор остается включенным, если регулируемая температура остается в пределах нейтральной зоны или если:

✓ Охлаждение: Регулировка температуры > Уставка + Нейтральная зона
 ✓ Отопление: Регулировка температуры < Уставка - Нейтральная зона

Любой второй компрессор не выключается сразу после первого, даже если температура остается за пределами нейтральной зоны, а будет соблюдаться задержка, определяемая параметром.

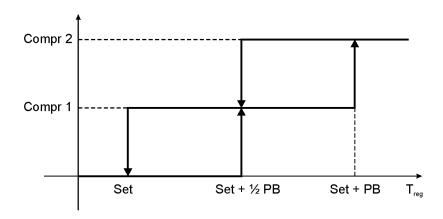
Поведение компрессоров ON-OFF в нейтральной зоне можно эффективно схематизировать для функции охлаждения с помощью следующей диаграммы:

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
SPC1	Заданное значение охлаждения	8.5 47.3	PC21	PC22	°C °F	UT
SPH1	Заданное значение нагрева	40.0 104.0	PC23	PC24	°C °F	UT
PC00	Датчик управления. 0: датчик подачи 1: датчик возврата	1	0	1		CO-C
PC14	Нейтральная зона регулирования	5.0 9.0	PC15	PC16	°C °F	IS-R
PC17	Время включения/отключения (нейтральная зона)	20	0	999	сек	IS-R
PC18	Тип нейтральной зоны: 0: разделенная 1: целая	0	0	1		IS-R

9.2.1.2 Регулировка ON-OFF в боковой полосе

Этот тип регулирования не зависит от состояния компрессора, а зависит только от температуры регулирования. Он используется по умолчанию, когда регулирование нагрева осуществляется по температуре на входе теплового насоса.

• Компрессор включается, если:


✓ Охлаждение: Регулировка температуры > Уставка + Боковая полоса✓ Отопление: Регулировка температуры < Уставка - Боковая полоса

• Компрессор отключается, если:

✓ Охлаждение: Регулировка температуры < Уставка✓ Отопление: Регулировка температуры > Уставка

При наличии двух компрессоров боковая полоса делится на 2 части (одинаковые или в соответствии с указанным % мощности) согласно диаграмме ниже (мощности функции охлаждения компрессоров одинаковы).

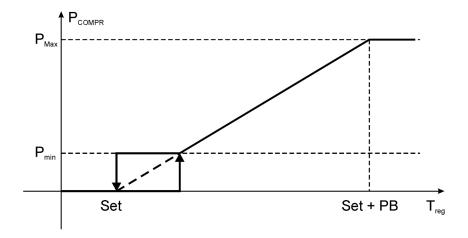
В случае работы трех компрессоров боковая полоса будет разделена на 3 части (одинаковы по размеру или в соответствии с настроенным процентным соотношением).

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
SPC1	Заданное значение охлаждения	8.5 47.3	PC21	PC22	°C °F	UT
SPH1	Заданное значение нагрева	40.0 104.,0	PC23	PC24	°C °F	UT
PC00	Датчик управления. 0: датчик подачи 1: датчик возврата	1	0	1		CO-C
PC12	Полоса регулирования (боковая зона)	2.5 4.5	0.1	20.0 36.0	°C °F	IS-R

9.2.2 Модулирующее регулирование

Модулирующее регулирование предусматривает 3 возможности:

- 1) Индивидуальный модулирующий компрессор
- 2) Модулирующий компрессор + 1 компрессор OnOff
- 3) Модулирующий компрессор + 2 компрессора OnOff


Ниже представлен список характеристик терморегулирования. По вопросам, связанным с управлением компрессором с помощью инвертора, обратитесь к соответствующему разделу.

9.2.2.1 Индивидуальный компрессор

В этом случае мощность компрессора будет принимать значение, зависящее от выходного сигнала алгоритма ПИрегулирования. В зависимости от требуемой мощности при наличии только модулирующего компрессора различают три случая:

- Минимальная мощность, которая может быть подана < Требуемая мощность < Максимальная мощность, которая может быть подана: Компрессор перейдет на требуемый уровень мощности
- Требуемая мощность > Максимальная мощность, которую можно обеспечить: Компрессор будет работать на максимальной мощности, которую можно обеспечить.
- Требуемая мощность < минимальной мощности, которую можно обеспечить. В этом случае поведение зависит от состояния компрессора:
 - ✓ Компрессор выключен: Компрессор останется выключенным и включится только тогда, когда требуемая мощность достигнет минимально возможного уровня.
 - ✓ Компрессор включен: Компрессор остается включенным на минимально возможном уровне мощности и отключается, когда требуемый уровень мощности достигает нуля.

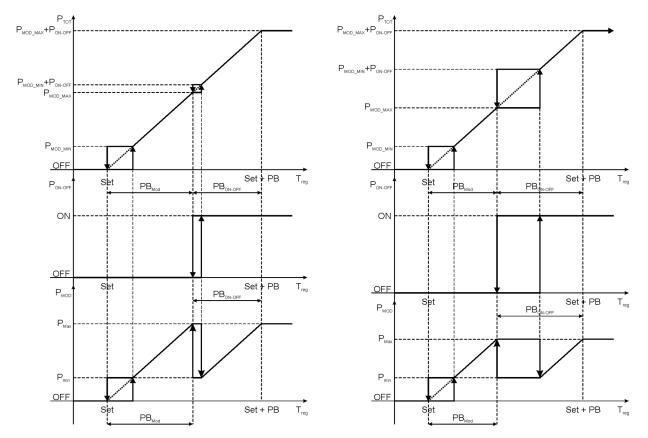
Ниже показана модуляция отдельного компрессора в чисто пропорциональном случае в режиме охлаждения.

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
SPC1	Заданное значение охлаждения	8.5	PC21	PC22	°C	UT
		47.3			°F	
SPH1	Заданное значение нагрева	40.0	PC23	PC24	°C	UT
		104.0			°F	
PC30	Пропорциональный диапазон	10.0	0.0	20.0	°C	IS-R
		18.0		36.0	°F	
PC31	Интегральное время ПИ-регулятора	0	0	999	сек	IS-R
PC32	Минимальная скорость (% выходного ПИ)	16.70	0.00	100.00	%	CO-R
ПК33	Максимальная скорость (% выходного ПИ)	100.00	0.00	100.00	%	CO-R

Если настроено, реле включения компрессора активируется, как только значение аналогового выхода станет больше 0.

9.2.2.2 Модулирующий компрессор и компрессор ON-OFF

В этом случае регулятор тепла должен учитывать соотношение между максимальной мощностью, которую может выдать модулирующий компрессор, и мощностью, которую может выдать компрессор ON-OFF, чтобы правильно распределить зону пропорциональности ($PB = PB_{MOD} + PB_{ON-OFF}$). Например, если модулирующий компрессор обеспечивает 60% мощности, а компрессор ON-OFF — 40%, зона пропорциональности будет разделена с учетом этого соотношения мощностей. $PB_{MOD} = 60\% \times PB$, $PB_{ON-OFF} = 40\% \times PB$.


При повышении температуры, определяемой датчиком терморегулирования, пропорционально увеличивается требуемая мощность (**P** _{REQ}) компрессоров. В зависимости от достигнутого уровня требуемой мощности терморегулятор выполняет следующие действия:

- Р _{REQ} < Р _{мор-мім} (Минимальная мощность, которую может обеспечить модулирующий компрессор) →Оба компрессора модулирующий и ON-OFF остаются выключенными.
- Р _{кео} = Р _{мор-міл} → Модулирующий компрессор отключается на минимальной мощности
- Р мод-мім < Р кер < Р мод-мах (максимальная мощность, которую может обеспечить модулирующий компрессор)
 →Мощность модулирующего компрессора адаптируется к требуемой мощности.
- $P_{REO} = P_{MOD-MIN} \rightarrow Mодулирующий компрессор работает на максимальной мощности.$
- $P_{MOD-MAX} < P_{REQ} < P_{MOD-MIN} + P_{ON-OFF}$ (Мощность компрессора ON-OFF) \rightarrow Модулирующий компрессор остается на максимальной мощности, а компрессор ON-OFF остается выключенным.
- **P** _{REQ} = **P** _{мор-мін} + **P** _{on-off} → Сначала модулирующий компрессор переводится с максимальной на минимальную мощность, учитывая, что время безопасности достигло минимума, активируется компрессор ON-OFF.
- **Р** мор-мім + **Р** ом-оff < **Р** кер < **Р** мор-мах + **Р** ом-оff → Компрессор ON-OFF включен, и мощность модулирующего компрессора адаптируется к требуемой мощности.
- Р _{REQ} ≥ Р _{мор-мах} + Р _{ом-оff} → Компрессор ON-OFF включен, а модулирующий компрессор работает на максимальной мощности.

При снижении температуры, определяемой датчиком терморегулирования, требуемая мощность пропорционально уменьшается. Описанный выше путь применяется в обратном направлении для модулирующих компонентов; поведение, напротив, отличается в следующих случаях:

- **P** мор-мім + **P** ом-орг > **P** кеQ > **P** мор-мах → Компрессор ON-OFF остается активным, а модулирующий компрессор работает на минимальной мощности.
- **Р** _{REQ} = **Р** _{мор-мах} → Сначала отключается компрессор ON-OFF, а затем модулирующий компрессор переходит с минимальной на максимальную мощность с учетом времени безопасности.
- Р мор-мім > Р кеQ > О→ Модулирующий компрессор поддерживается активным на минимально возможной мощности.
- Р REQ = 0 → Модулирующий компрессор отключается только тогда, когда требуемая мощность достигает 0.

Ниже показана работа модулирующего компрессора в тандеме с ON-OFF компрессором, только в пропорциональном случае и в режиме охлаждения:

Мощность модулирующего компрессора > мощность компрессора
ON-OFF

Мощность модулирующего компрессора < мощность компрессора
ON-OFF

Код	Описание параметров	По умолчани ю	Мин.	Макс	Ед. Изм.	Меню
PC34	Мощность модулирующего компрессора	100.00	0.00	100.00	%	CO-R
PC35	Мощность первого компрессора OnOff	0.00	0.00	100.00	%	CO-R
PC36	Мощность второго компрессора OnOff	0.00	0.00	100.00	%	CO-R

При включении контроллера запрос мощности от установки, вероятно, очень высок. В этом случае контроллер должен попытаться как можно быстрее адаптировать подаваемую мощность к запрашиваемой. Например, если модулирующий компрессор обеспечивает 60% от общей мощности, двухпозиционный компрессор — 40%, а требуемая мощность составляет 80%, то первым включится двухпозиционный компрессор, а сразу после него (в соответствии с безопасным временем) — модулирующий компрессор, который максимально быстро выйдет на необходимую мощность.

9.2.2.3 Модулирующий компрессор с двумя компрессорами ON-OFF

Работает аналогично предыдущему случаю, но со вторым компрессором с функцией включения-выключения, управляемым тем же методом, что и первый. Модулирующий компрессор всегда будет иметь пилообразную модуляцию.

10 ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ (ГВС)

Контроллер может управлять функцией горячего водоснабжения; тепловой насос будет оснащён трёхходовым клапаном для перенаправления потока горячей воды из системы в водонагреватель. При наличии одновременных запросов на регулирование температуры от системы и водонагревателя контроллер определит, какой запрос будет приоритетным, и примет все меры для его удовлетворения.

Во время переключения трехходового клапана может возникнуть необходимость остановки насоса (если клапан шарового типа), поэтому предусмотрено параметризуемое время остановки насоса во время переключения.

При работе в режиме ГВС приходится «делить» компрессор с основной системой, в результате чего машина всегда будет работать на максимальной мощности (сначала будут включаться все ступени ON-OFF, а затем модулирующий компрессор максимально быстро выводится на мощность 100%), чтобы сократить цикл.

Для облегчения достижения заданной температуры ГВС можно активировать дополнительный нагрев.

Запрос на ГВС считается активным, когда температура, измеренная датчиком, установленным в накопительном баке (в верхней части, если их два), опускается ниже заданного значения температуры ГВС за вычетом диапазона регулирования (т.е. заданное значение ГВС = 50° С, диапазон регулирования ГВС = 5° С. \rightarrow Запрос на ГВС активен, если датчик в верхней части накопительного бака обнаруживает температуру ниже 45° С). Датчик в нижней части бака ГВС использоваться для функции Антилегионелла и для регулирования солнечных панелей.

10.1 Управление приоритетами

Производство горячей воды (ГВС) всегда имеет приоритет над запросом системы на регулирование тепла. Для работы блока в режиме ГВС задано максимальное предельное время, чтобы предотвратить чрезмерное влияние на систему. Даже если на момент активации функции ГВС запрос от системы отсутствует, это может произойти во время работы системы ГВС; поэтому максимальное время всегда будет действительным. По истечении максимального времени работы в режиме ГВС, после переключения трёхходового клапана, насос включится на заданный период времени (проверка), чтобы обеспечить корректные показания датчика регулирования тепла. Максимальное время работы в режиме охлаждения/нагрева необходимо определить аналогичным образом, прежде чем вернуться к приготовлению горячей воды, если есть потребность. В этом случае датчик устанавливается в накопительном баке, что упрощает определение наличия или отсутствия потребности в горячей воде.

10.1.1 Работа

При «нормальной» работе в режиме отопления/охлаждения, т.е. при поступлении от установки запроса на регулирование тепла, трехходовой клапан находится в состоянии покоя.

При поступлении запроса на ГВС контроллер выполняет следующую последовательность:

- Компрессор выключен (только если насос должен быть выключен и/или выключение запрошено из конфигурации)
- По истечении *минимальной задержки между выключением компрессора и выключением насоса* (PP05) насос выключается (только если PP06 > 0, в противном случае насос остается включенным)
- Трехходовой клапан переключает из состояния покоя в рабочее состояние (клапан перенаправляет поток из системы отопления/охлаждения в резервуар ГВС). Эта операция предусматривает время переключения, которое будет зависеть от типа клапана, определенного в параметре РРО6, в течение которого насос должен оставаться выключенным. Это время можно установить на 0, в этом случае насос не выключается.
- В середине времени переключения инверсионный клапан переключается в положение переключения, если активен режим охлаждения; в противном случае инверсионный клапан остаётся в прежнем положении. Однако предусмотрено время отключения компрессора (также при условии, что насос не выключен) для смены режима работы (параметр РСО8), если активна функция охлаждения. В середине этого времени происходит эффективное переключение инверсионного клапана цикла.
- Насос снова активируется.

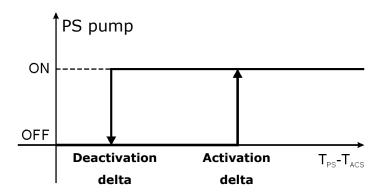
• По истечении минимальной задержки между включением насоса и включением компрессора (РРО4) компрессор снова включается. Если параметр РСО7 активен (обход времени безопасности компрессора при переключении), то время безопасности компрессора (минимальное время выключения компрессора – РСО5 и минимальное время между двумя включениями одного и того же компрессора – РСО6) не соблюдается. Компрессор будет полностью выключен в течение времени, которое будет максимальным между РСО8 и (РРО5+РРО6+РРО4). Если при переключении клапана инверсии цикла не предусмотрено время переключения трёхходового клапана с выключением насоса и минимальное время выключения компрессора, компрессор всегда будет оставаться включённым.

По завершении работы в режиме ГВС для достижения заданного или максимального времени контроллер выполняет последовательность в обратном порядке:

- Компрессор выключен (только если PC08 \neq 0 и/или PP06 \neq 0)
- По истечении *минимальной задержки между выключением компрессора и выключением насоса* (PP05) насос выключается (только если PP06 ≠ 0, в противном случае насос остается включенным)
- Трехходовой клапан переключает из рабочего состояния в состояние покоя (клапан перенаправляет поток из резервуара ГВС в систему отопления/охлаждения). Эта операция предусматривает время переключения, которое зависит от типа используемого клапана, определенного в параметре РРО6, в течение которого насос должен оставаться выключенным. Это время можно установить на 0, в этом случае насос не выключается.
- В середине времени переключения инверсионный клапан переключается в положение переключения, если предполагается активация режима охлаждения; в противном случае инверсионный клапан остаётся в прежнем положении. Однако предусмотрено время отключения компрессора (также при PP06=0) для смены режима работы (параметр PC08), если функция охлаждения активна, в середине которого происходит эффективное переключение инверсионного клапана цикла.
- Насос снова активируется.

По истечении минимальной задержки между включением насоса и включением компрессора (РРО4) компрессор снова включается. **Если параметр РСО7 активен** (обход времени безопасности компрессора при переключении), **то время безопасности компрессора** (минимальное время выключения компрессора – РСО5 и минимальное время между двумя включениями одного и того же компрессора – РСО6) не соблюдается. Компрессор будет полностью выключен в течение времени, которое будет максимальным между РСО8 и (РРО5+РРО6+РРО4). Если при переключении клапана инверсии цикла не предусмотрено время переключения трёхходового клапана с выключением насоса и минимальное время выключения компрессора, компрессор всегда будет оставаться включённым.

10.2 Использование вспомогательного отопления


Во всех режимах работы в режиме ГВС, если тепловой насос не успевает достичь заданной температуры в баке ГВС в течение времени, заданного параметром, можно включить имеющиеся вспомогательные ступени нагрева.

10.3 Управление цепью солнечных панелей отопления

Контур солнечных панелей состоит из специального насоса с датчиком потока, автоматического выключателя насоса и датчика, который определяет температуру воды в контуре солнечных панелей.

Насос контура солнечных панелей может иметь цикл проверки, который можно активировать с помощью параметра, при этом время включения и выключения всегда определяется параметром, если работа насоса необходима для правильного определения температуры контура солнечных панелей.

Насос солнечных панелей включится, как только температура, измеренная датчиком контура солнечных панелей, превысит температуру нижней части бака ГВС на минимальную разницу, определяемую параметром. Насос солнечных панелей выключится, когда температура нижней части бака ГВС превысит температуру контура солнечных панелей, уменьшенную на вторую разницу, определяемую параметром (вторая разница будет меньше первой). Эта регулировка, схематически представленная на следующем рисунке, направлена на максимальное использование «свободного» ресурса солнечных панелей.

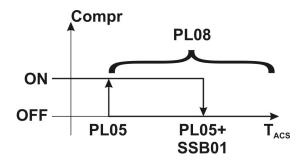
Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PP31	Зонд регулирования солнечных панелей: 0 — Вход 1 — Выход	0	0	1		IS-P
PP32	Дельта активации насоса солнечных панелей	5.0 9.0	0.0	20.0 36.0	°C °F	IS-P
PP33	Дельта отключения насоса солнечных панелей	3.0 5.5	0.0	20.0 36.0	°C °F	IS-P
PP34	Время включения насоса во время цикла обновления	2	1	99	Мин.	IS-P
PP35	Задержка насоса перед циклом обновления	5	1	99	Мин.	IS-P

10.3.1 Высокая температура

В случае высокой температуры в баке ГВС (верхняя часть бака) или в случае высокой температуры в контуре солнечной панели насос отключится.

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PP36	Уставка высокой температуры ГВС	70,0	0,0	90,0	°C	IS-P
		158,0	32,0	194,0	°F	
PP37	Дифференциал высокой температуры ГВС	10,0	0,0	20,0	°C	IS-P
		18,0		36,0	°F	
PP38	Уставка температуры солнечных панелей	100,0	0,0	130,0	°C	IS-P
		212,0	32,0	266,0	°F	
PP39	Дифференциал температуры солнечных панелей	10,0	0,0	20,0	°C	IS-P
		18,0		36,0	°F	

10.4 Антилегионелла


Это высокотемпературная термическая обработка для дезинфекции накопительного бака ГВС, которую необходимо проводить периодически. Если цикл борьбы с легионеллами включён, он выполняется с частотой, определяемой *интервалом цикла борьбы с легионеллами* (PLO2), который измеряется в днях. Счётчик цикла борьбы с легионеллами всегда активен при подаче питания на устройство. Цикл борьбы с легионеллами можно настроить при включении питания (PLO3=1). В этом случае цикл борьбы с легионеллами будет запущен сразу после подключения устройства к электросети.

10.4.1 Метод производительности

При активации цикла агрегат переходит на функцию ГВС с регулированием в режиме боковой полосы с выделенной уставкой и работает так же, как и ГВС:

- Уставка: Уставка Антилегионелла (PL05)
- Зона: Дифференциал ГВС (SSB01)

Во время цикла борьбы с легионеллами, если температура воды в баке ГВС превышает PL05+SSB01, компрессор отключается. Если температура опускается ниже PL05, компрессор снова включается, как показано на следующем рисунке:

Для успешного завершения цикла борьбы с легионеллами температура должна оставаться выше PL05 в течение времени поддержания режима борьбы с легионеллами (PL08). После запуска цикла борьбы с легионеллами, если только компрессор не сможет достичь заданной температуры, будет активирован дополнительный нагрев с использованием методов и задержек, описанных в соответствующем разделе.

Если устройство не может успешно завершить цикл борьбы с легионеллами ($T_{ACS} > PL05$ в течение как минимум PL08), он будет прерван по истечении максимального времени борьбы с легионеллами (PL04). В этом случае активируется сигнал тревоги (AL11) борьбы с легионеллами . После запуска цикла борьбы с легионеллами, если устройство останавливается из-за сигнала тревоги или отключения питания, состояние запоминается, и при повторном запуске устройства цикл борьбы с легионеллами также перезапускается. Отсчёт времени PL08 сбрасывается.

11 УПРАВЛЕНИЕ ИСТОЧНИКОМ ТЕПЛА

Контроллер управляет теплообменником источника, оптимизируя обмен энергией с окружающей средой. Существует три типа теплообменников:

- 1. Воздушный пластинчатый: в этом случае скорость вентилятора регулируется
- 2. Водяной без реверса: в этом случае регулируется производительность насоса источника и контролируется температура воды для предотвращения замерзания. Реверсирование осуществляется в холодильном контуре с двумя теплообменниками. Они меняют функцию, переходя с нагрева на охлаждение.
- 3. Водяной с реверсом: в этом случае регулируется производительность насоса источника и контролируется температура воды для предотвращения замерзания. Реверсирование осуществляется в водяном контуре, управляя двумя электроклапанами, которые изменяют поток воды. Терморегуляция осуществляется по датчику конденсатора или испарителя в зависимости от режима работы.

Регулирование скорости вращения вентиляторов или производительности насоса осуществляется с целью поддержания температуры конденсации в летнем цикле и испарения в зимнем цикле в установленных пределах. Температура конденсации/испарения может быть измерена одним или двумя датчиками температуры или давления в зависимости от конструктивных особенностей машины. Использование только одного датчика нецелесообразно при использовании электронного регулирующего вентиля (ЭРВ), для которого требуется датчик давления и датчик температуры, всегда находящиеся под низким давлением.

Помимо модулированного автоматического регулирования датчиков, доступно фиксированное регулирование скорости/производительности теплообменника с помощью параметра PF01. Значения скорости по умолчанию задаются параметрами PF61, PF62, PF63 и PF64.

11.1 Пластинчатый теплообменник с вентиляцией

Управление вентиляторами, в зависимости от конфигурации машины, может осуществляться с помощью:

- Аналоговый выход (0-10 В или ШИМ)
- Цифровой выход (реле)
- Аналоговый и цифровой выход

В последнем случае цифровой выход будет управляться как разрешающий работу регулятора скорости (такое разрешение должно быть предусмотрено для некоторых инверторов, чтобы гарантировать корректную работу) и будет активирован, как только значение аналогового выхода станет больше 0.

Регулирование — ПИД-регулятор. Возможность установки интегральной составляющей (параметр PF67) и дифференциальной составляющей (параметр PF68).

Для всех функций, в которых предусмотрена вентиляция (охлаждение, обогрев и оттаивание), определена уставка (давление конденсации в режиме охлаждения (PF11) и режиме оттаивания (PF51), давление испарения в режиме обогрева (PF21)), а также пропорциональная зона (PF12/PF52/PF22), минимальный и максимальный процент в нормальных рабочих условиях для включения и регулирования скорости вентилятора (PF16 и PF17 / PF58 и PF59 / PF31 и PF32).

Направление модуляции, когда давление:

- от конденсации, вверх в режиме охлаждения
- от испарения, вниз в режиме обогрева

При достижении заданного значения модулирующий вентилятор активируется на минимальной скорости. В случае подачи ШИМ-сигнала на управление предусмотрен запуск на 100% в течение времени, определяемого параметром (PF27).

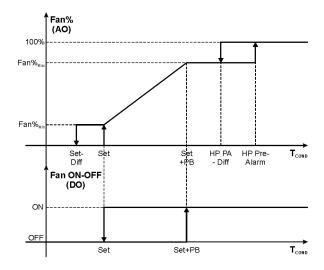
Скорость вентиляторов регулируется от минимума до максимума в зависимости от давления:

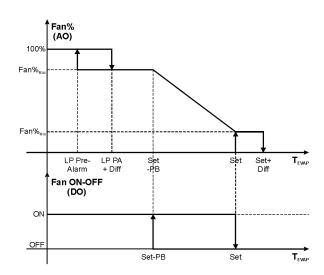
- относительно конденсации при подъеме от Set до Set + PB (зона пропорциональности) в режиме охлаждения
- относительно испарения при снижении от Set до Set PB в режиме нагрева

Для вентиляторов ON-OFF активация происходит при давлении:

- относительно конденсации превышает Set+PB в режиме охлаждения
- относительно испарения падает ниже Set+PB в режиме обогрева

и деактивация происходит при давлении:


- относительно конденсации ниже заданного в режиме охлаждения
- относительно испарения поднимается выше заданного в режиме обогрева


В случае модулирующего регулирования, если активирована предварительная сигнализация высокого давления, значит, что давление:

- от конденсации выше в режиме охлаждения
- от испарения ниже в режиме обогрева

При достижении заданного предварительного сигнала (высокое давление в режиме охлаждения, низкое давление в режиме обогрева) модулирующая вентиляция принудительно включается на 100% (параметры PF13, PF14, PF15, PF53, PF54, PF55, PF23, PF24 и PF25). Эта операция завершается выходом вентиляторов на максимальную скорость в нормальных условиях работы активной функции, когда давление (параметры PF18, PF56, PF57, PF33 и PF34):

- относительно конденсации ниже порога предварительной аварии (НР) минус дифференциал в режиме охлаждения
- относительно испарения, выше порога предварительной аварии LP, плюс дифференциал в режиме обогрева Схематично для функций охлаждения и обогрева изображается на рисунках 11.1– 1 и 11.1– 2 соответственно.

Вентиляция в режиме охлаждения

Вентиляция в режиме обогрева

Функциональность вентиляторов в режиме оттайки несколько отличается от таковой в режиме охлаждения и будет подробно описана в соответствующем параграфе.

В случае двух вентиляторов будет только один аналоговый выход. Будут включены первый и второй вентиляторы, а также соответствующее реле включения.

При включении включается вентилятор с наименьшей наработкой. При выключении выключается вентилятор с наибольшей наработкой.

Оба вентилятора удовлетворяют 50% общей потребности.

Если нагрузка превышает 55%, включается второй вентилятор, и оба работают параллельно. Если нагрузка падает ниже 45%, отключается вентилятор с наибольшим количеством часов работы.

12 УПРАВЛЕНИЕ ТЕПЛООБМЕННИКОМ ПОТРЕБИТЕЛЯ

Контроллер управляет теплообменником потребителя (обычно, но не обязательно, пластинчатым) с двухпозиционным или модулирующим насосом, который используется для поддержания давления конденсации при запуске установок в холодную зимнюю погоду (очень холодная вода может значительно снизить конденсацию) или для поддержания достаточно низкого давления испарения при запуске установок в жаркую летнюю погоду (очень горячая вода может значительно повысить давление испарения). Здесь также предусмотрены два линейного изменения (один для летнего режима работы, другой для зимнего) для задания модуляции насоса.

Насос может управляться непрерывно, в режиме ON-OFF или модуляции, с регулировкой нагрева или с помощью циклов проверки.

Управление переключением потока будет осуществляться таким же образом.

13 УПРАВЛЕНИЕ РАЗМОРАЖИВАНИЕМ

Ниже описаны режимы оттайки (РD10) с учетом использования различных функций.

13.1 Размораживание с ключа (кнопки)

Проще говоря, режим предполагает ручной запуск цикла размораживания путём входа в любое специализированное меню и запуска цикла простым нажатием кнопки. При этом должна быть возможность выбора выхода из цикла в «нормальном» режиме или по времени; эта функция доступна в пользовательском меню.

13.2 Размораживание по времени

Самый тривиальный способ выполнения оттаивания — выполнить цикл оттаивания с заранее заданной продолжительностью (PD06) после определенного времени работы в режиме обогрева (PD05).

13.3 Размораживание по температуре

Когда температура испарения опускается ниже значения, заданного параметром (PD02), начинается отсчёт времени задержки размораживания. Эффективный цикл начинается по окончании этой задержки, с последующим периодом стекания конденсата.

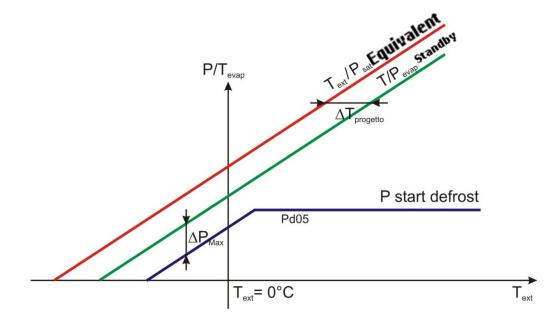
Длительность задержки может быть скомпенсирована в зависимости от температуры. Счёт будет приостановлен, если температура испарения снова поднимется выше заданного начального значения, и сброшен, если температура испарения превысит заданный параметром дифференциал.

13.4 Адаптивное размораживание

С понижением наружной температуры давление испарения снижается даже при чистом теплообменнике. Поэтому логично уменьшить заданное время задержки размораживания.

Если функция **адаптивной оттайки** включена с помощью параметра PD10, описанного ранее, и датчик наружной температуры присутствует, включен и не находится в режиме ошибки, то запуск размораживания становится динамическим.

Ожидаемая разница между наружной температурой и температурой испарения должна быть задана в параметре « *Разница между наружной температурой и температурой испарения*» (PD11). Эти данные будут обновляться контроллером, измеряя эффективную разницу после каждого успешного размораживания (не в течение максимального времени) по истечении *времени стабилизации после размораживания* (PD13).

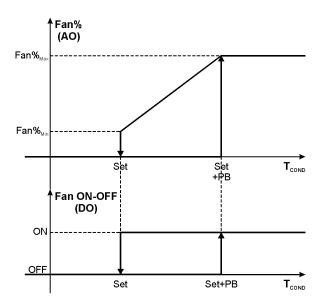

Измеренный дифференциал будет усреднен с начальным значением параметра, которое впоследствии будет обновляться. Эффективное значение дифференциала всегда можно посмотреть (и изменить) через параметр PD11 (меню производителя).

Максимальная разница между ожидаемым и измеренным давлением испарения (эквивалентно Тнаруж. – PD11), которая может быть принята до начала задержки оттаивания, затем должна быть указана в *Динамической дельте* давления оттаивания (PD12).

В зависимости от ожидаемой разницы между наружной температурой и температурой испарения рассчитывается ожидаемая температура испарения и, следовательно, ожидаемое давление испарения. Исходя из этих данных, заданное значение для начала оттаивания рассчитывается путём простого вычитания значения динамической дельты давления оттаивания (PD12), описанного выше.

Эффективное значение начала оттаивания будет равно наименьшему из двух значений: рассчитанного, как описано выше, и *заданного значения начала оттаивания* (PD02). Это значение отображается в меню состояния устройства и, однако, ограничено параметром PD19.

На рисунке ниже схематически представлена графика эффективного стартового набора параметров оттаивания.



При установке *типа компенсации оттаивания* на 4 (PD10 – значение по умолчанию) будут включены как временная, так и динамическая компенсация, что ограничит циклы оттаивания строго необходимыми и максимально повысит эффективность теплового насоса.

13.5 Вентиляция при размораживании

Необходимо обеспечить возможность включения (с помощью параметра PF03) вентиляции во время цикла оттаивания с заданным набором параметров (минимальная и максимальная скорость, заданная скорость и диапазон регулирования). Кроме того, режим активации вентилятора должен быть «инвертированным», то есть вместо запуска на минимальной скорости при превышении температурой конденсации относительно заданного значения, он должен запускаться на максимальной скорости при превышении температурой конденсации заданного значения плюс диапазон.

Эта процедура позволяет выйти из критических условий, при которых цикл оттаивания не может завершиться удовлетворительно, полностью удалив лёд с теплообменника. Фактически, вентиляция приводит к увеличению продолжительности цикла оттаивания, при этом температура конденсации не достигает уровня, достаточного для перевода машины в аварийный режим, что приводит к увеличению количества удаляемого с теплообменника льда. Динамика изменения скорости вентилятора в режиме оттаивания представлена на следующем рисунке.

13.6 Время удержания температуры в конце размораживания

Существует условие завершения размараживания (PD1), которое определяет завершение самого цикла для любого режима размораживания, за исключением режима с таймером. Чтобы предотвратить завершение цикла размораживания без необходимого эффекта, после достижения условия завершения (PD18) определяется время работы машины в режиме размораживания.

13.7 Защита от замерзания системы сбора конденсата

Внутри поддона для сбора конденсата установлен нагревательный элемент, который предотвращает образование льда во время оттаивания. Когда наружная температура опускается ниже заданного значения во время цикла оттаивания, включается нагревательный элемент.

В качестве выходных данных могут выступать:

- Выделенный цифровой выход
- Аналоговый выход с внешним реле
- Мощность нагрева (если не настроено ни одно из вышеперечисленного)

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
Pd30	Включение подогревателя поддона для сбора конденсата во время оттаивания	Нет (0)	Нет (0)	Да (1)		CO-D
Pd31	Заданное значение Т° нагревателя поддона для сбора конденсата во время оттаивания	3,0 37,4	-10,0 14,0	30,0 86,0	°C °F	IS-D
Pd32	Дифференциал нагревателя поддона для сбора конденсата во время оттаивания	5,0 9,0	0,0 0,0	20,0 36,0	°C °F	IS-D

14 УПРАВЛЕНИЕ КОМПРЕССОРАМИ

Для обеспечения целостности, долговечности и бесперебойной работы компрессоров необходимо соблюдать простые меры предосторожности. Существуют различия между двухпозиционными и модулирующими компрессорами, а также другие общие характеристики. Ниже представлен список общих характеристик.

14.1 Конфигурация мощности, выдаваемой компрессорами

Для точной модуляции мощности, вырабатываемой агрегатом, в зависимости от мощности, потребляемой различными активными контурами, контроллер позволяет определить индивидуальную долю мощности для каждого компрессора. На основе требуемой мощности, этих данных и того факта, что известен «следующий» компрессор, который должен быть включён/выключен, можно будет активировать/деактивировать ступени на нужном уровне.

Пример: случай модулирующего компрессора и двухпозиционного компрессора. Доля мощности модулирующего компрессора установлена на уровне 52%, а двухпозиционного компрессора – на уровне 48%. Эти данные зададут алгоритм регулирования нагрева, который выведет модулирующий компрессор на максимальную мощность, когда запрашиваемая мощность достигнет 52% от общей мощности. Если минимальная мощность, которую может обеспечить модулирующий компрессор, составляет 20%, алгоритм регулирования нагрева может рассчитать, что эта доля соответствует 10,4% от общей мощности установки. Модулирующий компрессор будет переведен на минимальную мощность, а двухпозиционный компрессор включится, когда требуемая мощность установки достигнет 58,4% от общей. Впоследствии мощность модулирующего компрессора будет увеличиваться пропорционально требуемой мощности.

14.2 Ограничение мощности

Эта функция позволяет ограничить общую мощность устройства в соответствии с требованиями. Это возможно, если настроить и подключить датчик ограничения мощности (4-20 мА, 0-5 В или 0-10 В) к аналоговому входу контроллера или установить значение меньше 100 в параметре РС90 « Максимальная мощность устройства» . При использовании зонда это ограничит мощность устройства. Параметр РС90 не будет иметь никакого эффекта. Если блоку требуется меньше мощности, чем установлено ограничение, он работает нормально, в противном случае мощность ограничивается.

Пример

Ограничение: 75%

Устройство будет работать в штатном режиме до тех пор, пока запрашиваемая мощность ниже 75%. Как только запрашиваемая мощность превысит 75%, мощность будет ограничена этим значением.

14.3 Откачка

Процедура откачки используется для удаления из испарителя избытка хладагента.

С помощью параметра *«Включить откачку»* (РС91) можно включить откачку и выбрать вид регулирования: только по времени (РС91=1) или с относительным порогом (РС91=2) по давлению испарения.

При регулировании по времени, когда требуется первый запуск компрессора, электромагнитный клапан откроется (необходимо настроить на цифровом выходе) и по истечении времени « Задержка компрессора с момента открытия электромагнитного клапана» (РС93) компрессор включится. При выключении компрессора обычно выключаются все компрессоры, и по истечении времени «Задержка электромагнитного клапана с момента выключения компрессора» (РС94) электромагнитный клапан закроется.

В случае срабатывания сигнализации по всем компрессорам агрегата процедура не учитывает задержку клапана.

В случае регулирования с относительным порогом, когда требуется активация первого компрессора, электромагнитный клапан открывается и по истечении времени задержки компрессора с момента открытия электромагнитного клапана (РС93) компрессор включается. При выключении, когда выключается последний компрессор, регистрируется значение давления испарения. Это значение непрерывно сравнивается со значением, считываемым датчиком, и когда разница между зарегистрированным значением и значением, считываемым датчиком, превышает параметр « Порог отключения откачки» (РС92), электромагнитный клапан закрывается.

В случае срабатывания сигнализации по всем компрессорам агрегата процедура не учитывает задержку клапана.

14.4 Времена безопасности

Следующие значения времени безопасности будут определены (из параметров), действительные для всех компрессоров:

- 1. Минимальное время выключения (РСО5)
- 2. Минимальное время включения (в зависимости от условий тревоги) (РСО4)
- 3. Минимальное время между двумя последовательными пусками одного и того же компрессора (РСО6)
- 4. Минимальное время между запуском различных компрессоров (РСОЗ)
- Минимальное время между выключением разных компрессоров (РС11)
 Также имеется еще один безопасный период времени, позволяющий избежать (при оттаивании)
 одновременного включения большего количества компрессоров, избегая пиков потребления электроэнергии.
- 6. Минимальное время между включением различных компрессоров при оттаивании (РС13).

14.5 Последовательность включения/выключения

При наличии нескольких компрессоров необходимо определить последовательность их активации. Существуют конфигурации с фиксированной последовательностью включения/выключения, а также конфигурации с переменной последовательностью. В последовательности активации правильный уровень мощности для активации «следующего компрессора» будет зависеть от доли общей мощности, необходимой для этого компрессора. Возможные случаи перечислены ниже. Контроллер будет получать информацию об этом на основе значений параметров конфигурации.

14.5.1 Конфигурации с фиксированной последовательностью

Конфигурации, в которых последовательность включения и выключения фиксирована, перечислены в таблице 14.5.1- 1 с соответствующими пояснениями:

Конфигурация	Логика включения/выключения
Модулирующий	В нормальных условиях первым всегда активируется модулирующий компрессор, а
компрессор и компрессор	затем фиксированный. При включении, когда мощность, требуемая установкой,
ON-OFF	превышает уровень, при котором модулирующий компрессор переходит на
	минимальную мощность и включается двухпозиционный компрессор, последний
	включается первым, а модулирующий компрессор включается после
	двухпозиционного компрессора, и его мощность регулируется в соответствии с
	потребностями установки.
Модулирующий	В нормальных условиях первым всегда активируется модулирующий компрессор, а
компрессор и два	затем последовательно компрессоры с двухпозиционным управлением. При
компрессора ON-OFF	включении, когда мощность, требуемая для установки, превышает уровень, при
	котором модулирующий компрессор переходит на минимальную мощность и
	включается компрессор с двухпозиционным управлением, последний включается

первым, а модулирующий компрессор включается после компрессора с двухпозиционным управлением, и его мощность регулируется в соответствии с потребностями установки.

14.5.2 Конфигурация с переменной последовательностью

Конфигурация с двумя или тремя компрессорами с функцией включения-выключения. Включение компрессоров осуществляется ступенчато (в нейтральной зоне или зоне пропорциональности). Независимо от количества активных компрессоров, следующим активируется тот, который, исходя из количества часов работы и количества пусков, имеет наименьший механический износ среди выключенных. Аналогично, следующим отключаемым компрессором будет тот, который имеет наибольший механический износ среди включенных. Компрессоры будут включаться и выключаться в порядке возрастания номера в соответствии с износом. Износ (w = износ) компрессоров определяется с помощью формулы, которая связывает его с количеством часов работы (h) и с количеством пусков (s) через два коэффициента (n,k), определяемых таким же количеством параметров:

$$W = n \times h + k \times s$$

При выборе этого типа последовательности и установке одного из двух параметров, выражающих коэффициенты, в значение 0 можно учитывать только количество часов работы или только количество пусков. Установка обоих параметров в значение 0 невозможна. Первым будет активирован неактивный компрессор с меньшим индексом износа. Активный компрессор с большим индексом износа будет отключен первым.

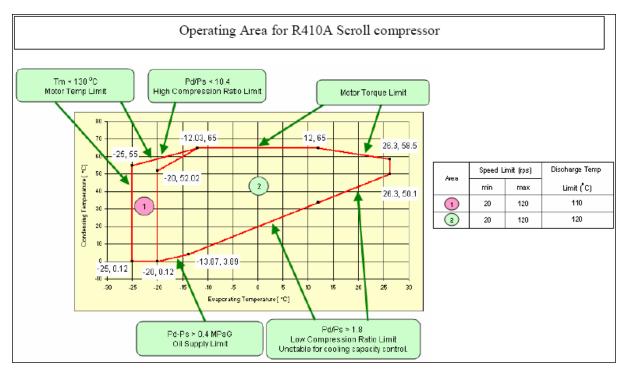
Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PC02	Ротация компрессоров: 0:FIFO 1:LIFO 2:FIFO+HS 3:LIFO+HS	3	0	3		CO-C
PC19	Фактор часов работы компрессоров	1	0	255		IS-R
PC20	Фактор количества пусков компрессоров	1	0	255		IS-R

14.6 Управление модулирующими компрессорами

Модулирующие компрессоры требуют ряда дополнительных мер по сравнению с компрессорами с двухпозиционным регулированием. Каждый модулирующий компрессор каждого производителя имеет свои особенности, поэтому для каждого необходимо определить все характеристики. Ниже приведено описание предполагаемых методов управления, которые качественно одинаковы для всех компрессоров. Эти методы управления должны быть индивидуализированы для различных моделей. В качестве примера будут взяты компрессоры BLDC компании SIAM, характеристики которых известны.

14.6.1 Включение и выключение с соответствующими временами безопасности

Компрессор запускается на минимальной скорости, которая зависит от модели, определяемой параметрами (РС32-39-40).

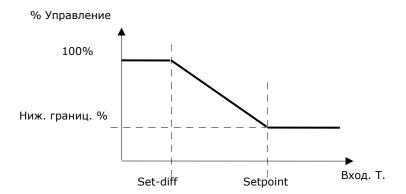

Сразу после этого компрессор переходит на высокую скорость вращения, чтобы гарантировать возврат масла и стабилизацию рабочих условий (РС41-42). Для достижения скорости стабилизации с минимальной скорости вращения компрессор должен использовать максимально допустимое ускорение, ограниченное параметром (РС47),

также и при замедлении. Компрессор запустится на минимальной скорости вращения (РС32) и выйдет на скорость стабилизации (РС41) за определённое время (РС47).

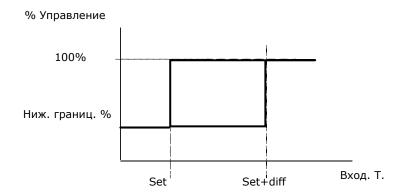
Кроме того, при выключении компрессор должен сначала перейти на минимальную скорость, а затем отключиться таким образом, чтобы обеспечить баланс давления в контуре. В случае отключения по аварийному сигналу компрессор должен быть выключен не сразу, а переведен на минимальную скорость с большим замедлением, 7 об/с (PC48).

14.6.2 Управление кривой модулирующего компрессора

Помимо стратегий модуляции скорости компрессора, необходимо следить за тем, чтобы рабочая точка находилась в пределах допустимой области (кривой), которая является функцией рабочей частоты. Относительная кривая, управляемая контроллером, определяется для каждого компрессора.



Если рабочая точка выходит за пределы допустимой зоны, отображается сигнал «AL17 Выход за пределы допустимой зоны». Компрессор отключается. Сигнализация самосбрасывается. При превышении количества срабатываний в час (PA91) сигнализация сбрасывается только вручную.


14.6.3 Уменьшение производительности (разгрузка)

Это стратегия разгрузки (скорости компрессора) для работы в переходных режимах (когда вода слишком горячая летом и слишком холодная зимой). Скорость компрессора пропорционально снижается до тех пор, пока температура воды не вернется в допустимый диапазон. Если параметр ограничения установлен на 100%, регулирование отключено. Если параметр установлен на значение ниже 100%, запрос на регулирование, независимо от того, больше ли он, ограничивается указанным значением.

Работа в режиме охлаждения

Работа в режиме обогрева

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PC80	Требуемое максимальное значение мощности (разгрузка) при использовании модулирующего компрессора	100,0	0,0	100,0	%	CO-R
PC81	Ограничение мощности (разгрузка) в режиме охлаждения	25,0 29,0	SPC1	PA27	°C °F	CO-R
PC82	Ограничение мощности (разгрузка) в режиме обогрева	15,0 29,0	PA26	SPH1	°C °F	CO-R
PC83	Дифференциал работы разгрузки	5,0 9.0	0.0	20.0 36.0	°C °F	CO-R

14.6.4 Управление возвратом компрессорного масла

При низкой скорости компрессора возврат масла в компрессор не гарантируется. Во избежание проблем, связанных с нехваткой смазки, работа компрессора на низких оборотах допускается только в течение короткого времени. Стратегия управления этой функцией очень проста: когда скорость вращения падает ниже значения, определяемого параметром (низкая нагрузка), активируется функция синхронизации (определяемая параметром). По истечении времени задержки компрессор принудительно работает на максимальной скорости в течение времени, определяемого параметром. В результате температура воды обычно достигает заданного

значения, и компрессор отключается по завершении процедуры. Если запрос всё ещё выполняется, компрессор работает со скоростью, определяемой терморегуляцией, и при необходимости повторно активируются тайминги.

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PC85	Режим управления возвратом масла модулирующего компрессора: 0=Отключено 1=Только режим модуляции 2=Режим модуляции и включения/выключения	0	0	2		CO-R
PC86	Время удержания ниже минимального порога для активации возврата масла	5	0	999	Мин.	CO-R
PC87	Время принудительной работы компрессора с максимальной скоростью для активации возврата масла	60	0	999	Сек	CO-R
PC88	Минимальный порог оборотов для активации возврата масла	40.0	PC32	100.0	%	CO-R

15 УПРАВЛЕНИЕ ЭЛЕКТРОННЫМ РАСШИРИТЕЛЬНЫМ ВЕНТИЛЕМ

Управление электронным расширительным клапаном с помощью EVDRIVE

Управление электронным клапаном должно быть оптимизировано и не ограничиваться классическим контролем перегрева.

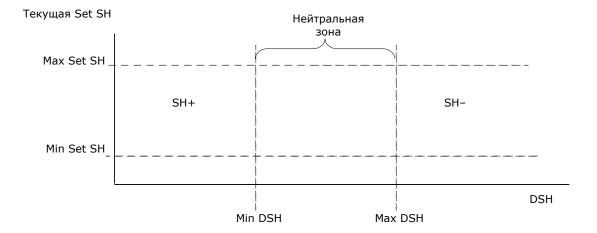
Существует ряд условий и правил, которые должны учитывать другие системные переменные в целом, а также переменные перегрева (температуру и давление испарения), чтобы ограничить проблемы, связанные с задержками, вносимыми датчиком температуры и его позиционированием. Эти функции должны быть включены в параметрах таким образом, чтобы производитель мог их отключить.

15.1 Обеспечение работы EEV

Контроллер знает, когда пора активировать агрегат (включить компрессор), и, следовательно, должен разрешить работу драйвера EVDRIVE через шину CAN (внешний драйвер) или функцию клапана (встроенный драйвер).

Разрешение на работу должно предшествовать включению компрессора на несколько секунд. Клапан должен быть «подготовлен» к открытию на соответствующий процент для включения компрессора.

15.2 Набор параметров ПИД


Контроллер предусматривает два независимых набора параметров для использования в режимах охлаждения (и оттаивания) и нагрева. Контроллер должен иметь возможность выбирать наиболее подходящий набор параметров в зависимости от режима работы. Набор параметров можно просто выбрать из двух доступных или передать параметры напрямую (параметры PV доступны из меню производителя).

15.3 Модуляция набора SH (Нейтральная зона)

В правильно работающей машине разница между температурой нагнетания компрессора и температурой конденсации перегрева (DSH) должна составлять от 20 до 30К.

- Если DSH слишком низкий, жидкий хладагент может возвращаться в компрессор для противодействия этому явлению полезно повысить настройку SH.
- Если перегрев слишком велик, то риск возврата жидкого хладагента отсутствует учитывая «благоприятные» условия с точки зрения безопасности компрессора, можно уменьшить заданное значение SH для повышения эффективности системы (снижение давления конденсации и увеличение давления испарения).

Эти изменения будут иметь минимальное и максимальное значения и могут быть заданы с помощью параметра. Регулировка нейтральной зоны на DSH используется для увеличения или уменьшения заданного значения SH; каждое изменение имеет задержку, что позволяет системе стабилизироваться.

Таким образом, ограничивается риск возврата жидкого хладагента в компрессор и повышается эффективность системы в соответствии с условиями работы машины.

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
PV60	Активация модуляции SH (нейтральная зона)	Да(1)	Нет (0)	Да(1)		CO-V
PV61	Максимум уставки SH	15.0	3.0	25.0	К	CO-V
PV62	Минимум уставки SH	2.0	1.0	25.0	К	CO-V
PV63	Максимальное значение DSH	30.0	Pv64	50.0	К	CO-V
PV64	Минимальное значение DSH	20.0	0.0	Pv63	К	CO-V
PV65	Задержка изменения SH вне нейтральной зоны	5	1	60	Мин.	CO-V
PV66	Отрицательное изменение SH выше зоны	0,2	0.1	2.0	К	CO-V
PV67	Положительное изменение SH ниже зоны	1.0	0.1	2.0	К	CO-V

15.4 Откачка

Электронный клапан можно отключить перед выключением компрессора для выполнения функции откачки, если это необходимо. Компрессор (на минимальной скорости в режиме модуляции) отключается, когда давление испарения падает ниже заданного параметра. При повторном запуске можно запросить открытие клапана до Страница 67из 141

запуска компрессора, чтобы обеспечить восстановление баланса давлений. В этом случае компрессор включится снова, когда давление испарения превысит другой заданный параметр.

16 УПРАВЛЕНИЕ ПЕРЕПУСКНЫМ КЛАПАНОМ КОМПРЕССОРА

Эта функция, полезная только при использовании компрессора с двухпозиционным управлением (ON-OFF), поддерживает давление испарения в зимнем режиме. Перепускной клапан активируется, если температура испарения остаётся ниже фиксированного значения, заданного другим параметром, в течение периода времени, заданного другим параметром, без активации оттаивания. Это означает, что снижение температуры испарения полностью оправдано снижением наружной температуры (или температуры воды, циркулирующей во внешнем теплообменнике), но создаёт слишком много проблем для агрегата. В этом случае можно активировать перепускной клапан компрессора. Активация будет иметь максимальное время включения, после которого должно пройти минимальное время выключения, прежде чем клапан снова включится, и максимальное количество последовательных активаций, после которых агрегат перейдёт в аварийный режим без дальнейшего вмешательства. Клапан может активироваться, даже если температура нагнетания превышает заданное значение в течение определённого времени. Во всех случаях активация прерывистая, с таймингами ВКЛ и ВЫКЛ.

17 УПРАВЛЕНИЕ ПЕРЕПУСКНЫМ КЛАПАНОМ ГОРЯЧЕГО ГАЗА

По шине CAN можно также подключить второй EVDRIVE для управления функцией байпаса горячего газа, чтобы поддерживать температуру близкой к заданному значению.

Можно отобразить значения, связанные с этой функцией. Параметры относятся к меню обхода EVD.

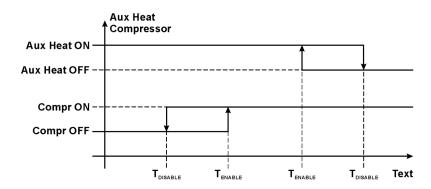
18 ДОПОЛНИТЕЛЬНЫЙ НАГРЕВАТЕЛЬ

Контроллер предусматривает возможность включения источников тепла вместо компрессоров в ситуациях, когда это необходимо. Во всех случаях речь идёт о рабочих условиях, выходящих за пределы нормы и считающихся «исключительными».

Доступные устройства будут установлены параметрами Конструктора конфигурации ввода-вывода:

- **Бойлер:** устройство подключается ниже по потоку от теплового насоса на подающем трубопроводе и может также использоваться для производства горячей воды.
- **Электрический нагреватель для контура отопления:** в качестве альтернативы бойлеру предусмотрена возможность установки данного нагревателя в случае, когда бойлер отсутствует или используется только для нагрева горячей воды.
- Электронагреватель для бака ГВС: как альтернатива или дополнение к бойлеру

Регулировки нагрева, контролирующие вспомогательный нагрев, будут следовать той же логике, что и регулировки, относящиеся к компрессорам, определенным параметрами конфигурации, описанными в параграфе, посвященном регулированию нагрева (в боковой полосе или в нейтральной области, если ON-OFF, или ПИ, если модуляция); однако они будут иметь независимые полосы регулирования для каждого перечисленного ресурса.


Условия и режимы, при которых может быть активирован обогрев, описаны в следующих параграфах, в дополнение к аварийным ситуациям, которые будут выделены в соответствующем параграфе.

18.1 Наружная низкая температура (воздух-вода)

В зимний период, когда наружная температура опускается до особенно низких значений, использование теплового насоса может быть нецелесообразным или недостаточным как для отопления, так и для ГВС. Для управления этим граничным условием предусмотрены два дополнительных уровня нагрева, определяемых параметром «Дополнительный нагрев при низкой наружной температуре» и принимающих следующие значения:

- 0 Дополнительный обогрев при низкой внешней температуре отключен
- 1 Дополнительный нагрев включён в режиме интеграции: когда значение Т наруж. опускается ниже заданного значения дополнительного нагрева в режиме интеграции, включается дополнительный нагрев. Дополнительный нагрев выключается, когда значение Т наруж. снова превышает заданное значение + дифференциал дополнительного нагрева в режиме интеграции.
- 2 Дополнительный нагрев включён в режиме интеграции и замены: как и в предыдущем случае, если значение Т наруж. опускается ниже заданного значения дополнительного нагрева в режиме замены , компрессоры отключаются. Таким образом, активным остаётся только дополнительный нагрев. Компрессоры снова включаются, когда значение Т наруж. снова поднимается выше заданного значения + дифференциал дополнительного нагрева в режиме замены .
- 3 Дополнительный нагрев включён в режиме замены: Когда значение параметра Т наруж. опускается ниже заданного значения дополнительного нагрева в режиме замены, включается дополнительный нагрев и отключаются компрессоры. Дополнительный нагрев отключается, и компрессоры снова включаются, когда значение параметра Т наруж. снова превышает заданное значение + разность температур дополнительного нагрева в режиме замены.

В последних двух случаях, если компрессоры отключены из-за низкой наружной температуры, их можно включить повторно (выбранный параметр) при срабатывании аварийного сигнала, блокирующего дополнительный нагрев. В зависимости от рабочего предела дополнительного нагрева, как показано на следующем рисунке:

Код	Описание параметров	По умолча нию	Мин.	Макс	Ед. Изм.	Меню
Pr16	Уставка (наружный воздух) доп. нагрева в режиме интеграции	0.0 32.0	-30.0 -22.0	10.0 50.0	°C °F	CO-A
Pr17	Дифференциал нагрева в режиме интеграции	10.0 18.0	0.0	20.0 36.0	°C °F	CO-A
Pr18	Уставка (наружный воздух) доп. нагрева в режим замены	-10.0 14.0	-30.0 -22.0	10.0 50.0	°C °F	CO-A

Pr19	Дифференциал нагрева в режиме замены	10.0	0.0	20.0	°C	CO-A
		18.0	0.0	36.0	°F	
Pr20	Возобновление работы компрессора при отключении ТЭН/бойлер доп. нагрева	1	0	1		CO-A
	0 = Компрессор отключен					
	1 = Компрессор включен					

В работе вспомогательный нагрев настраивается как дополнительная ступень мощности (интеграция) или как отдельный источник энергии как для установки, так и для ГВС.

Фактически, принцип работы дополнительного нагревательного элемента будет таким же, как и у компрессоров.

В случае интеграции ситуация более деликатная, поскольку компрессоры активны. В этом случае вспомогательный нагрев будет активирован, всегда поддерживая один и тот же рабочий режим (различный в зависимости от активной функции), только когда мощность, требуемая функцией, непрерывно превышает 100% в течение минимального времени, определяемого параметром. Вспомогательный нагрев будет следовать собственной системе регулирования нагрева, независимой от компрессора, и будет деактивирован (в первую очередь) по достижении заданного режима, всегда поддерживая компрессоры на максимальной мощности.

18.2 Заданное значение уставки не достигнуто

Другим случаем активации дополнительного нагрева является невозможность достижения активной уставки (Отопление, ГВС и Антилегионелла) в течение «разумного» времени, фиксируемого параметром.

В этом случае для различных задействованных функций определяется «индивидуальная» задержка. Отсчёт этой задержки начинается с момента, когда требуемая мощность превышает 100%, и продолжается до тех пор, пока мощность не будет поддерживаться выше этого порогового значения. Отсчёт останавливается, если требуемая мощность падает ниже 100%, и восстанавливается до исходного значения, если требуемая мощность падает ниже 100% за вычетом смещения, заданного параметром. Если счётчик достигает нуля, активируется дополнительный нагрев, способствующий достижению заданной мощности. Дополнительный нагрев будет следовать собственной системе регулирования нагрева, независимой от компрессора, и будет отключен (в первую очередь) по достижении заданной мощности, всегда поддерживая компрессоры на максимальной мощности.

18.3 Размораживание

Во время оттаивания температура воды в баке ГВС падает. Будет определен специальный набор параметров для запроса на включение дополнительного нагрева и предотвращения слишком сильного снижения заданной температуры.

В зависимости от активной функции будут активированы доступные дополнительные ресурсы отопления.

19 ВСПОМОГАТЕЛЬНЫЕ ФУНКЦИИ

Контроллер управляет активацией вспомогательных функций.

ВСПОМОГАТЕЛЬНЫЕ ВЫ	ходы (IS	-U)*			
Уставка охлаждения вспомогательная 1	14,0	-50,0	302,0		UT
Уставка отопления вспомогательная 1	36,0	-50,0	302,0		UT
Уставка охлаждения вспомогательная 2	14,0	-50,0	302,0		UT
Уставка отопления вспомогательная 2	36,0	-50,0	302,0		UT
Вид вспомогательного регулирования 1	0	0	3		IS-U
0 = Охлаждение					
1 = Отопление					
2 = Прямое					
3 = Реверсивное					
Вспомогательный дифференциал 1 регулирования охлаждения	2,0	0,0	36,0		IS-U
Минимальное значение уставки вспомогательной 1	0,0	0,0	100,0	%	IS-U
Максимальное значение уставки вспомогательной 1	100,0	0,0	100,0	%	IS-U
Вид аналогового регулирования вспомогательный 1	1	0	1		IS-U
0 = Минимум при включении устройства					
1 = Ступень включения					
Включить регулирование также при выключенном агрегате	0	0	1		IS-U
0 = Отключено					
1 = Включено					
Датчик для вспомогательного регулирования 1	0	0	18		IS-U
0 = Отключено					
1 = Температура на входе					
2 = Температура на выходе					
3 = Температура верхней части бака ГВС					
4 = Температура нижней части бака ГВС					
5 = Температура наружного воздуха					
6 = Температура теплообменника 1					
7 = Температура теплообменника 2					
8 = Температура на выходе источника					
9 = Температура SP (солнечных панелей) на входе					
10 = Температура SP (солнечных панелей) на выходе					
11 = Температура нагнетания компрессора					
12 = Температура всасывания					
13 = Давление конденсации					
14 = Давление испарения					
15 = Датчик AUX1					
16 = Датчик AUX2					
17 = Ограничение мощности					
18 = Температура на входе источника					

		T			l
Вспомогательный дифференциал 1 регулирования нагрева	2,0	0,0	36,0		IS-U
Задержка вспомогательного сигнала 1	10	0	999	Сек	IS-U
Интегральная составляющая вспомогательного регулирования 1	0	0	999	Сек	IS-U
Дифференциальная составляющая вспомогательного регулирования 1	0	0	999	Сек	IS-U
Вид вспомогательного регулирования 2 0 = Охлаждение 1 = Отопление 2 = Прямое 3 = Реверсивное	0	0	3		IS-U
Вспомогательный дифференциал 2 регулирования охлаждения	2,0	0,0	36,0		IS-U
Минимальное значение уставки вспомогательной 2	0,0	0,0	100,0	%	IS-U
Максимальное значение уставки вспомогательной 2	100,0	0,0	100,0	%	IS-U
Вид аналогового регулирования вспомогательный 2 0 = Минимум при включении устройства 1 = Ступень включения	1	0	1		IS-U
Включить регулирование также при выключенном агрегате 0 = Отключено 1 = Включено	0	0	1		IS-U
Датчик для вспомогательного регулирования 2 0 = Отключено 1 = Температура на входе 2 = Температура на выходе 3 = Температура верхней части бака ГВС 4 = Температура наружного воздуха 6 = Температура теплообменника 1 7 = Температура теплообменника 2 8 = Температура на выходе источника 9 = Температура SP (солнечных панелей) на входе 10 = Температура SP (солнечных панелей) на выходе 11 = Температура нагнетания компрессора 12 = Температура всасывания 13 = Давление конденсации 14 = Давление испарения 15 = Датчик AUX1 16 = Датчик AUX2 17 = Ограничение мощности 18 = Температура на входе источника	0	0	18		IS-U
18 = Температура на входе источника	2.0	0.0	26.0		10.1
Вспомогательный дифференциал 2 регулирования нагрева	2,0	0,0	36,0	_	IS-U
Задержка вспомогательного сигнала 2	10	0	999	Сек	IS-U

Интегральная составляющая вспомогательного регулирования 2	0	0	999	Сек	IS-U
Дифференциальная составляющая вспомогательного регулирования 2	0	0	999	Сек	IS-U

20 МОТОРИЗОВАННЫЙ КЛАПАН

В приложении есть возможность настройки моторизованного клапана, который исключает агрегат из системы теплоснабжения, когда он неактивен.

Эта функция включается простой настройкой цифрового выхода как «Моторизованный клапан».

Включение машины активирует цифровой выход моторизованного клапана, и по истечении времени, определяемого параметром «РС89 - Время ожидания моторизованного клапана», насос также включится, чтобы обеспечить полное открытие.

При выключении сначала выключится насос, а также закроется клапан по истечении времени, определяемого параметром PC89.

21 ПРЕДВАРИТЕЛЬНАЯ ТРЕВОГА

Реализовано управление предварительными сигналами низкого и высокого давления, а также режима охлаждения, чтобы предотвратить возникновение предельных условий и не допустить срабатывания аварийной сигнализации с последующим отключением компрессора и насоса, что позволяет ограничить мощность машины. Это регулирование основано на «глобальных» параметрах, действующих для каждого предварительного сигнала тревоги, таких как процент снижения мощности и время включения и выключения нейтральной зоны, а также на конкретных уставках и дифференциалах для каждого из трёх предварительных сигналов тревоги.

Эта регулировка выполняется в нейтральной зоне. Функция активируется, и, следовательно, потребляемая машиной мощность снижается на процент, определяемый параметром «Процент снижения мощности в режиме предварительной тревоги» (РА54), после времени активации/снятия нейтральной зоны предварительной тревоги (РА55), когда:

- » в режиме охлаждения значение датчика давления испарения ниже *уставки предварительного* оповещения о низком давлении в режиме охлаждения (PA50)
- » при отоплении значение датчика давления испарения ниже *уставки предварительного оповещения о* низком давлении при отоплении (РА97)
- э значение датчика давления конденсации превышает *уставку предварительной сигнализации высокого* давления (PA52)
- э значение одного из датчиков температуры на выходе потребителя, датчиков на входе потребителя, датчика в нижней части бака ГВС или датчика выходной температуры источника ниже уставки предварительного оповещения о замораживании (РА14)

Мощность будет снижена до минимальной скорости модулирующего компрессора в случае машин с модулирующим компрессором или до тех пор, пока не останется активным только один компрессор в случае машин с компрессорами, работающими только по принципу «включено-выключено». Компрессор всегда будет оставаться включённым.

Мощность всегда будет увеличиваться параметром PA54 по истечении времени PA55 до достижения значения запрошенной мощности, когда:

- В режиме охлаждения значение датчика давления испарения больше, чем уставка предварительного сигнала низкого давления в режиме охлаждения (РА50) плюс дифференциал предварительного сигнала низкого давления (РА51)
- при отоплении значение датчика давления испарения больше, чем уставка предварительного сигнала низкого давления при отоплении (РА97) плюс дифференциал предварительного сигнала низкого давления (РА51)
- э значение датчика давления конденсации ниже *уставки предварительной сигнализации высокого* давления (PA52) за вычетом дифференциала предварительной сигнализации высокого давления (PA53)
- э значение показаний датчиков, указанных выше, больше, чем *уставка предварительной сигнализации антизамерзания* (PA14) плюс дифференциал предварительной сигнализации антизамерзания (PA15).

Пример предостережения о низком давлении

Каждая регулировка имеет свою настройку в нейтральной зоне и, следовательно, свой процент снижения. Если имеется несколько предварительных сигналов тревоги, влияющих на мощность, будет учитываться только предварительный сигнал тревоги с наибольшим процентом снижения.

	ПРЕДВАРИТЕЛЬНЫЕ ТРЕВОГИ						
PA14	Установлена предварительная сигнализация антифриза	5,0 41,0	PA03	10,0 50,0	°C °F	IS-S	
PA15	Дифференциал предварительной сигнализации антифриза	2,0 3,6	0,1 0,1	10,0 18,0	°C °F	IS-S	
PA50	Предварительная сигнализация низкого давления установлена в системе охлаждения	4,0 58,0	PA40	10,0 145,0	Бар psi	CO-S	
PA51	Предварительный перепад низкого давления	0,5 7,3	0,1 1,5	4,0 58,0	Бар psi	CO-S	
PA52	Установка предварительной сигнализации высокого давления	37,0 536,5	16,0 232,0	PA48	Бар psi	CO-S	
PA53	Высокий перепад давления перед сигнализацией	5,0 72,5	0,1 1,5	10,0 145,0	Бар psi	CO-S	
PA54	Процентное снижение мощности в предтревоге	5,00	0	100,00	%	CO-S	
PA55	Время активации/снятия нейтральной зоны до тревоги	10	1	999	Сек	CO-S	
PA97	Предварительная сигнализация низкого давления установлена в системе отопления	5,6 81,2	PA96	10,0 145,0	Бар psi	CO-S	

22 ТРЕВОГИ

22.1 Защита от замерзания

Функция работает (отопление, охлаждение или ГВС) в соответствии с параметрами, описанными ниже

- Уставка сигнализации защиты от замерзания
- Дифференциал защиты от замерзания (см. выше)
- Таймаут сигнала тревоги антизамерзания
- Автоматическое включение агрегата для работы в режиме защиты от замерзания

Функция защиты от замерзания активна даже при выключенном устройстве (контроллер включен и находится в режиме ожидания защиты от замерзания).

Определенный порог предусмотрен только для зимнего режима работы, при достижении относительного дифференциала активируется устройство и подается сигнал тревоги.

Если сигнализация защиты от замерзания сохраняется в течение *Времени работы насоса при низкой температуре*, насос выключается до тех пор, пока не будет сброшена сигнализация.

Если в линии главного теплообменника агрегата и в баке ГВС имеются встроенные нагреватели, их можно настроить на работу вместе с насосом или, в качестве альтернативы, при запуске агрегата для защиты от замерзания в соответствии со значением параметра Pr02.

Если в процессе обеспечения ГВС возникает ситуация, предотвращающая замерзание, могут возникнуть 2 ситуации:

Параметр Активации ГВС в режиме защиты от замерзания (PH05) = 1: в этом случае агрегат продолжает работать в режиме ГВС

Параметр Активации ГВС в режиме защиты от замерзания (РН05) = 0: в этом случае агрегат переходит в предыдущий режим работы.

Во всех случаях блок выполняет предусмотренные действия (вспомогательный сигнал, включение отопления и т. д.) и отключается, если выйти из состояния защиты от замерзания невозможно.

22.2 Контроль аварии по температуре

Сигналы тревоги по температуре контролируются только во время работы машины, в зависимости от режима работы, путем мониторинга температуры воды, измеренной различными имеющимися датчиками, и сравнения ее с предельными значениями, установленными в соответствующих параметрах. Следующие параметры действительны для всех сигналов тревоги по температуре:

- *Реакция на температурный сигнал тревоги* (РА20), определяющие действие, которое должно быть выполнено при возникновении одного из этих сигналов тревоги:
 - РА20 = 0 Отключено
 - РА20 = 1 Реакция является только сигналом.
 - РА20 = 2 Реакция на сигнал блокирует устройство, сброс всегда происходит автоматически.
 - PA20 = 3 Реакция на сигнал блокирует устройство, с автоматическим сбросом. Если состояние тревоги сохраняется в течение *максимального времени действия сигнализации температуры* (PA21), сигнализация сбрасывается вручную.
- Задержка срабатывания температурной сигнализации (РА23), которая определяет минимальное время, в течение которого состояние тревоги должно оставаться активным, прежде чем сработает сигнализация и будут выполнены предусмотренные действия.
- Дифференциал аварийной сигнализации температуры (PA22), который определяет дифференциал относительно заданного значения, необходимый для того, чтобы считать аварийное состояние отработанным. Сброс аварийной сигнализации (всегда автоматический) и восстановление полной работоспособности устройства.
- Таймаут температурных тревог при включении (РА24), который определяет время предотвращения температурных тревог при запуске агрегата (из положения ВЫКЛ)

Страница 76из 141

Если возникло состояние тревоги и оно остается активным в течение времени РА18, выдается соответствующий код тревоги, определенный в следующих параграфах.

22.2.1 Сигнализация высокой температуры:

Сигнализация по высокой температуре (AL02) определяется в пределах и реакциях (P20) следующим образом:

- Работа в режиме отопления: температура <u>подачи</u> должна превышать значение аварийного сигнала высокой температуры в режиме отопления (РА25). При срабатывании аварийного сигнала компрессор отключается вместе со всеми активными вспомогательными ступенями нагрева, а циркуляционный насос продолжает работать.
- Работа в режиме ГВС: температура <u>ГВС и/или подачи</u> должна превышать *аварийный сигнал высокой температуры в режиме ГВС* (РА29). При срабатывании аварийного сигнала компрессор отключается вместе со всеми активными вспомогательными ступенями нагрева, а циркуляционный насос продолжает работать.
- Работа в режиме «Антилегионелла»: температура <u>ГВС и/или подачи</u>должна превышать *значение* аварийного сигнала высокой температуры в режиме «Антилегионелла» (РАЗ1). При срабатывании аварийного сигнала компрессор отключается вместе со всеми активными вспомогательными ступенями нагрева, а циркуляционный насос продолжает работать.
- Работа в режиме охлаждения: температура обратки или возврата должна превышать значение аварийного сигнала высокой температуры в режиме охлаждения (РА27). При срабатывании аварийного сигнала компрессор и циркуляционный насос отключаются. Циркуляционный насос периодически включается для выполнения цикла обновления. Если условие сохраняется в течение максимального времени действия аварийного сигнала температуры (РА21) и РА20 = 3, компрессор и циркуляционный насос отключаются, а аварийный сигнал сбрасывается вручную.

22.2.2 Сигнализация низкой температуры:

Сигнализация низкой температуры (AL01) определяется в пределах и реакциях (PA20) следующим образом:

- Работа в режиме отопления: температура <u>обратки или возврата</u> должна опуститься ниже *значения* аварийного сигнала низкой температуры в режиме отопления (РА26). При срабатывании аварийного сигнала последовательно активируются ступени дополнительного нагрева. Если условие сохраняется в течение максимального времени срабатывания аварийного сигнала температуры (РА21) и РА20 = 3, все системы отопления отключаются (компрессор, дополнительный нагрев, циркуляционный насос), и аварийный сигнал сбрасывается вручную. ТВІ
- Работа в режиме ГВС и защиты от легионелл: температура <u>ГВС и/или обратки</u> должна опуститься ниже аварийного сигнала низкой температуры в режиме ГВС (РАЗО). При срабатывании аварийного сигнала последовательно активируются ступени нагрева. Если условие сохраняется в течение максимального времени срабатывания аварийного сигнала температуры (РА21) и РА20 = 3, все системы отопления отключаются (компрессор, дополнительный нагрев, циркуляционный насос), и аварийный сигнал сбрасывается вручную. ТВІ
- Работа в режиме охлаждения: температура **подачи** должна опуститься ниже *аварийного сигнала высокой температуры в режиме охлаждения* (РА28). При срабатывании аварийного сигнала компрессор отключается, а циркуляционный насос продолжает работать.

22.2.3 Сигнализация высокой температуры нагнетаемого газа компрессора

Контроллер также управляет датчиком температуры горячего газа на выходе компрессора. Если температура горячего газа превышает значение аварийного сигнала высокой температуры на выходе компрессора (PA85), срабатывает аварийный сигнал высокой температуры на выходе компрессора (AL21) с автоматическим сбросом. Если в течение часа происходит определенное количество срабатываний аварийного сигнала высокой температуры отработавших газов (PA88), аварийный сигнал сбрасывается вручную . Сигнализация приводит к отключению компрессора.

22.3 Контроль аварийного давления

Управление сигналами тревоги по давлению осуществляется в зависимости от режима работы, путём мониторинга состояния реле высокого и низкого давления, а также давления, измеряемого датчиками высокого и низкого давления. Параметр РА95 позволяет выбрать, будет ли циркуляционный насос выключен или включен при срабатывании сигнализации высокого давления.

22.3.1 Сигнализация высокого давления от реле давления

При активации цифрового входа реле высокого давления активируется *сигнал тревоги высокого давления от реле давления* (ALO4), что приводит к немедленному отключению компрессора и имеет автоматический сброс. Сигнал тревоги сбрасывается вручную, если в течение одного часа происходит определенное *количество срабатываний сигнала тревоги высокого давления* (PA89).

- Если в режиме нагрева ГВС поступают запросы на отопление, то включается отопление, а циркуляционный насос продолжает работать в обычном режиме.
- Циркуляционный насос отключается (если PA95=1) в режиме охлаждения, а вентиляция принудительно включается (или поддерживается) на максимуме, даже если она связана с включением компрессора (PF02=1).

22.3.2 Низкое давление от реле давления

Если цифровой вход реле низкого давления активирован и остаётся активным в течение *задержки сигнала тревоги низкого давления* (PA56), активируется *сигнал тревоги низкого давления от реле давления* (AL05), что приводит к немедленному отключению компрессора и автоматическому сбросу. Сигнализация становится с ручным сбросом, если *количество сигналов тревоги низкого давления для ручного сброса* (PA43) превышает несколько в течение часа.

- В режиме отопления или ГВС, если поступают запросы на отопление, отопление активируется, циркуляционный насос продолжает работать в обычном режиме, а вентиляция принудительно включается (или поддерживается) на максимуме, даже если она связана с включением компрессора (PF02=1).
- Циркуляционный насос остается активным в режиме охлаждения.

Необходимо указать некоторые особые случаи:

- Цифровой вход реле низкого давления активен при выключенном компрессоре: если в этой ситуации требуется включение компрессора, то не допускается ни активация циркуляционного насоса, если он связан с терморегуляцией (PP11> 0), ни включение компрессора. Сигнализация «Аварийный сигнал запуска при низкой мощности» (AL08) будет сброшена автоматически. Сигнализация сбрасывается вручную, если количество аварийных сигналов низкого давления запуска (PA90) будет превышено в течение одного часа.
- Обход при запуске: при включении компрессора сигнализация низкого давления предотвращается благодаря времени обхода сигнализации низкого давления при запуске компрессора (PA42), в течение которого активация реле низкого давления не приводит к срабатыванию сигнализации.

22.3.3 Сигнализация высокого давления от датчика

Если давление конденсации превышает заданное значение аварийного сигнала высокого давления (РА48), активируется аварийный сигнал высокого давления от датчика (AL06), управление которым аналогично аварийному сигналу высокого давления от реле давления. Аварийное состояние отменяется (и аварийный сигнал становится сбрасываемым), когда давление конденсации падает на величину перепада аварийного сигнала высокого давления (РА49) ниже заданного значения РА48.

Первоначально сигнализация имеет автоматический сброс, если не превышено определенное количество срабатываний в час (РА89); в этом случае она становится сбрасываемой вручную и может быть сброшена, если

за это время давление упадет ниже минимального порога (РА48) определенного дифференциального значения (РА49).

22.3.4 Сигнализация низкого давления от датчика

Если давление, считываемое датчиком, ниже уставки (РА40 при охлаждении и РА96 при нагреве) при выключенном компрессоре и запросе на включение компрессора, то работа циркуляционного насоса, связанного с терморегуляцией (РР11> 0), и запуск компрессора запрещены. Сигнализация «Аварийный сигнал запуска при низкой мощности» (АL08) срабатывает с автоматическим сбросом. Сигнализация сбрасывается, когда давление превышает уставку (РА40 или РА96) плюс дифференциал аварийного сигнала низкого давления (РА41). Сигнализация сбрасывается вручную, если в течение одного часа проверяется количество аварийных сигналов низкого давления запуска (РА90).

Сигнализация датчика низкого давления также может быть активирована во время байпаса, когда компрессор включен, в соответствии со *значением активации сигнализации низкого давления во время байпаса* (РА44):

- РА44 = 0 Сигнализация отключена во время байпаса
- РА44 = 1 Сигнализация включена только во время байпаса в режиме охлаждения
- РА44 = 2 Сигнализация включена во время байпаса только в режиме отопления и ГВС
- РА44 = 3 Сигнализация всегда включена во время байпаса

Если во время байпаса давление испарения падает ниже уставки сигнала тревоги низкого давления во время байпаса (РА45) и в течение задержки сигнала тревоги низкого давления во время байпаса (РА47) оно остается ниже уставки РА45 плюс перепад сигнала тревоги низкого давления во время байпаса (РА46), то активируется сигнал тревоги низкого давления байпаса (АL33) с ручным сбросом, причем управление идентично управлению сигнала тревоги низкого давления от реле давления.

Если компрессор активен и период байпаса закончился, если давление испарения падает ниже

- Сигнализация низкого давления уставка (РА40) в режиме охлаждения
- Сигнализация низкого давления уставка (РА96) в режиме отопления

для *задержки сигнала тревоги низкого давления* (РА56) активируется *сигнал тревоги низкого давления от преобразователя* (AL07) с управлением, идентичным управлению сигнала тревоги низкого давления от реле давления.

Состояние тревоги отменяется, и сигнализация сбрасывается (или становится сбрасываемой), когда давление испарения:

- Ниже перепада давления (РА41) по уставке РА40, в режиме охлаждения.
- Ниже перепада давления (РА41) по уставке РА96, в режиме отопления.

Что касается сигнализации низкого давления от реле давления, то здесь есть следующие дополнения:

Первоначально сигнализация имеет автоматический сброс, если не превышено определенное количество срабатываний в час (РА43); в этом случае она становится сбрасываемой вручную и может быть сброшена, если за это время давление поднялось выше минимального порога одного определенного дифференциального значения.

22.4 Алгоритм контроля перегрева, управление сигнализацией

Сигналы тревоги, которые срабатывают только при включенном алгоритме контроля перегрева. Автоматически сбрасываются каждый раз при отключении контроля перегрева.

Для всех этих сигналов тревоги можно установить задержку времени: если измерение выходит за пределы диапазона, сначала выдается предупреждение, по истечении установленной задержки активируется сигнал тревоги.

Также можно установить дифференциал: если вы находитесь в состоянии предупреждения и измерение падает до порогового значения, равного дифференциалу, статус измерения автоматически возвращается в положение «ОК» без подачи сигнала тревоги.

22.4.1 Сигнализация низкого перегрева LoSH

Если перегрев опускается ниже установленного порога (PV02, PV12) дольше, чем разрешено (PV71), активируется сигнализация низкого перегрева. Можно установить дифференциал (PV70).

22.4.2 Сигнализация перегрева HiSH

Если перегрев превышает заданное пороговое значение (PV03, PV13) дольше, чем допустимо (PV73), активируется сигнализация высокого перегрева. Можно установить дифференциал (PV72).

22.4.3 Сигнализация низкого рабочего давления LOP

Если температура испарения опускается ниже установленного порогового значения (PV04, PV14) дольше, чем разрешено (PV83), активируется сигнализация LOP. Можно задать дифференциал (PV82).

В состоянии предупреждения активируется алгоритм коррекции, который изменяет положение открытия клапана.

22.4.4 Сигнализация высокого рабочего давления МОР

Если температура испарения превышает заданное пороговое значение (PV05, PV15) дольше, чем разрешено (PV77), активируется сигнализация МОР. Можно задать дифференциал (PV76).

В состоянии предупреждения активируется алгоритм коррекции, который изменяет заданное значение перегрева, которое воздействует на контроль перегрева.

Параметры, регулирующие этот алгоритм:

- PV78: рабочая полоса алгоритма управления МОП
- РV79: фильтр, применяемый для измерения температуры испарения
- PV80: максимальное изменение, применимое к заданному значению перегрева
- PV81: задержка, с которой активируется алгоритм управления МОР для активации управления перегревом.

22.4.5 Сигнализация низкого давления LP

Если давление испарителя падает ниже установленного порога (PV34) дольше, чем разрешено (PV75), активируется сигнализация LOP. Можно задать дифференциал (PV74).

22.5 Сигнализация последовательности фаз

Можно управлять состоянием обрыва фазы или неправильной последовательности фаз, настроив цифровой вход как «Последовательность фаз» и подключив выход реле, которое обнаруживает это состояние.

Если цифровой вход активирован, будет подан сигнал тревоги последовательности фаз и будут отключены все активные трехфазные нагрузки: компрессоры, насос потребителя, насос источника и насос солнечной панели, вентиляторы, интеграционные резисторы, нагреватель антифриза и вспомогательные выходы.

22.6 Диагностика

Существует два типа тревожных сигналов: с ручным сбросом и с автоматическим сбросом. Для многих тревожных сигналов можно настроить наиболее подходящий тип сброса с помощью параметров.

22.6.1 Аварии с ручным сбросом

Если сработала сигнализация с ручным сбросом:

. Значок аварии начнет мигать.

При нажатии клавиши ENTER (SEI) в меню «Alar» отображается код первой активной тревоги.

После устранения условий, вызвавших срабатывание тревоги, её можно сбросить вручную. Для этого:

Страница 80из 141

- находиться на странице аварии, которую нужно сбросить
- · нажмите и удерживайте клавишу ENTER (Set) около 2 секунд.

На этом этапе, если других сигналов тревоги нет, откроется страница с надписью «none». Значок сигнала тревоги погаснет, и машина вернется в обычный режим работы. Если же есть другие сигналы тревоги, отобразится код следующего активного сигнала.

Последствия, возникающие в результате активации ручного сигнала тревоги, остаются в силе до тех пор, пока пользователь не отменит сообщение о тревоге.

22.6.2 Аварии с автоматическим сбросом

Если сработала сигнализация с автоматическим сбросом:

- Значок аварии начнет мигать.

При нажатии клавиши ENTER (Set) в меню «Alar» отображается код первой активной тревоги.

После устранения условий, вызвавших срабатывание тревоги, сброс и отмена сообщения о тревоге восстанавливаются автоматически без вмешательства пользователя.

Последствия, возникающие в результате срабатывания автоматической сигнализации, остаются в силе до тех пор, пока не будут устранены причины, вызвавшие срабатывание сигнализации.

22.7 Таблица аварий

Код	Описание аварии	Тип	Реакция	Примечания
AL01	Низкая температура	Сигнал/ Руч/Авто	Только сигнал или ВЫКЛ. Компрессор (*1)	Настраиваемая задержка
AL02	Высокая температура	Сигнал/ Руч/Авто	Только сигнал или Компрессор ВЫКЛ (*1)	
AL03	Реле потока	Руч/Авто	Компрессор выключен Насос ВЫКЛ после PP09	Настраиваемая задержка
AL04	Высокое давление от реле давления	Руч/Авто	компрессор ВЫКЛ (* ²)	
AL05	Низкое давление от реле давления	Руч/Авто	компрессор и вентилятор выключены (* ²)	Задержка запуска при настраиваемых условиях эксплуатации
AL06	Высокое давление от датчика	Руч/Авто	компрессор ВЫКЛ (* ²)	
AL07	Низкое давление от датчика	Руч/Авто	компрессор и вентилятор выключены (* ²)	Задержка запуска при настраиваемых условиях эксплуатации

AL08	Запрет запуска из-за низкого давления	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AL09	Антизамерзание	Руч	Компрессор выключен насос ВЫКЛ после PP10 (* ³)	Настраиваемая задержка
AL10	Реле потока солнечных панелей	Руч/Авто	Насос ВЫКЛ после РР09	Настраиваемая задержка
AC21	Защита компрессора 1	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AC22	Защита компрессора 2	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AC23	Защита компрессора 3	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AC24	Защита котла	Руч/Авто	Котел выключен	Настраиваемая задержка
AC25	Защита вентилятора	Руч/Авто	Вентилятор выключен Блокировка компрессора, если PA84 > 0	Настраиваемая задержка
AC26	Защита насоса ГВС	Руч/Авто	Насос выключен	Настраиваемая задержка
AC27	Защита насоса источника	Руч/Авто	Насос выключен	Настраиваемая задержка
AC28	Защита насоса солнечных панелей	Руч/Авто	Насос выключен	Настраиваемая задержка
AC29	Защита нагревателей	Руч/Авто	Нагреватель ВЫКЛ.	Настраиваемая задержка
AC30	Защита нагревателей ГВС	Руч/Авто	Резистор ГВС ВЫКЛ.	Настраиваемая задержка
AL11	Высокая температура нагнетаемого газа компрессора	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AL12	Антилегионелла	Руч/Авто	Отображать	Настраиваемая задержка
AL13	Эксплуатационный предел (наработка)	Руч/Авто	Отображать	
AL14	Размораживание	Руч/Авто	Отображать	
AC01	Часы работы компрессоров	Авто	Отображать	
AP01	Часы работы насоса ГВС	Авто	Отображать	
AP02	Часы работы насоса источника	Авто	Отображать	

AP03	Часы работы насоса солнечных панелей	Авто	Отображать	
AF01	Часы работы вентилятора 1	Авто	Отображать	
ES01	Датчик температуры входа потребителя	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES02	Датчик температуры наружной	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES03	Датчик температуры выхода потребителя	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES04	Датчик температуры выхода источника	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES05	Датчик температуры теплообменника 1	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES06	Датчик температуры бака ГВС (верхняя часть)	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES07	Датчик температуры бака ГВС (нижняя часть)	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES08	Датчик температуры на выходе солнечных панелей	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES09	Датчик температуры на входе солнечных панелей	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES10	Датчик давления конденсации	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES11	Датчик температуры нагнетания	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES12	Датчик температуры всасывания	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
S13	Датчик давления испарения	Авто	Блокирует функции, которые его используют	Настраиваемая задержка

ES14	Датчик температуры теплообменника 2	Авто	Блокирует	Настраиваемая
			функции, которые его используют	задержка
AL15	Авария конфигурации ввода-вывода	Авто	Отображение	
AL16	Предел температуры нагнетания модулирующего компрессора	Авто	Компрессор выключен	
AL17	Авария выхода измеряемой величины за пределы кривой эффективной работы	Руч/Авто	Компрессор выключен	Настраиваемая задержка
AL19	Сигнализация разряда/повреждения RTC	Руч/Авто	Отображение	
AL20	Авария преобразователя частоты	Авто	Компрессор выключен	
ES15	Вспомогательный датчик 1	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES16	Вспомогательный датчик 2	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
ES17	Датчик ограничения мощности	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
AL26	Авария расширения	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
AL27	Датчик температуры на входе источника	Руч	Компрессор выключен Насосы выключены (энергоснабжение , источник и солнечные панели) вентиляторы выключены обогреватель выключен вспомогательные выходы ВЫКЛ	Настраиваемая
ES18	Датчик температуры на входе источника	Авто	Блокирует функции, которые его используют	Настраиваемая задержка
AL28	Авария мастера по связи	Руч/Авто	Отображение	Исправить 5 мину
		-		

AC31	Защита вентилятора 2	Руч/Авто	вентиляторы выключены блокировка компрессора, если	Настраиваемая задержка	
AL29	Вспомогательный сигнал аварии 1	Авто	РА84 > 0 Блокировка вспомогательного регулятора 1, если присутствует, иначе только сигнализация.		
AL30	Вспомогательный сигнал аварии 2	Авто	Блокировка вспомогательного регулятора 2, если присутствует, иначе только сигнализация.	Настраиваемая задержка	
AL31	Авария уровня воды	Руч/Авто	компрессор выключен насос ВЫКЛ после PP09	Настраиваемая задержка	
AL32	Сигнализация байпаса EVD	Авто	Блокирует функции, которые его используют	Настраиваемая задержка	
AL33	Сигнализация низкого давления байпаса	Руч	Компрессор и вентилятор выключены (* ²)	Настраиваемая задержка	

- (*) При запуске все сигналы тревоги снимаются.
- (*1) Управление насосом осуществляется в зависимости от режима (нагрев/охлаждение) и типа сигнала тревоги (высокая/низкая температура)
- $(*\ ^2)$ Управление насосом осуществляется в зависимости от режима (нагрев/охлаждение) и типа сигнала тревоги (высокое/низкое давление).
- (* ³) В качестве альтернативы, устройство включается или активируются нагреватели. Сигнал/Авто/Руч = Сигнализация, автоматический или ручной (можно задать с помощью параметра или по количеству событий в час)

22.8 Журнал аварий

Контроллер предусматривает ведение журнала аварий, в котором отслеживаются последние 100 «уникальных» событий (включая, например, ручное управление или размораживание с помощью кнопки). При превышении 100 событий самые старые будут перезаписаны. Для событий, не являющихся аварией (размораживание с помощью кнопки и т. д.), предварительных тревог и тревог с автоматическим сбросом, будут записаны дата и время начала и окончания аварийного состояния. Для тревог с ручным сбросом также будут записаны дата и время ручного сброса.

23 ПАРАМЕТРЫ КОНФИГУРАЦИИ

23.1 Общий список параметров конфигурации

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
	меню г	ІОЛЬЗОВАТЕЛ	пя (ит)		1	-	<u> </u>
MOdE	Устанавливает режим работы: 0: CooL, (Охлаждение/Лето) 1: HEAt (Отопление/Зима)	0	0	1		UT	
SPC1	Заданное значение охлаждения - уставка	8.5 47.3	PC21	PC22	°C °F	UT	
SPH1	Заданное значение нагрева - уставка	40.0 104.0	PC23	PC24	°C °F	UT	
SPB1	Уставка ГВС	50.0 122.0	20.0 68.0	95.0 203.0	°C °F	UT	
SSB1	Дифференциал ГВС	1.0 1.8	0.0	10.0 18.0	°C °F	UT	
SCDI	Уставка охлаждения от DI	10.0 50.0	PC21	PC22	°C °F	UT	
SHDI	Уставка нагрева от DI	45.0 113.0	PC23	PC24	°C °F	UT	
Pb01	Уставка 1 перепуска горячего газа Evdrive	15,0 59,0	-30,0 -22,0	40,0 104,0	°C °F	UT	
Pb11	Уставка 2 перепуска горячего газа Evdrive	15,0 59,0	-30,0 -22,0	40,0 104,0	°C °F	UT	
PU02	Регулировка уставки охлаждения вспомогательная 1	14,0	-50,0	302,0		UT	
PU09	Регулировка уставки отопления вспомогательная 1	36,0	-50,0	302,0		UT	
PU22	Регулировка уставки охлаждения вспомогательная 2	14,0	-50,0	302,0		UT	
PU29	Регулировка уставки отопления вспомогательная 2	36,0	-50,0	302,0		UT	
PSd1	Пароль пользователя	0	-999	9999		UT	
	МЕНЮ О	БСЛУЖИВАН	(AM) RN				
	P	АБОТА (МА-F)				
PM00	Лимит часов работы компрессора	2000	0	9999	часы х 10	MA-F	
PM30	Лимит часов работы насоса	2000	0	9999	часы х 10	MA-F	

Страница 87из 141

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PM40	Лимит часов работы вентилятора	2000	0	9999	часы х 10	MA-F	
	ФОРС	ирование (MA-F)				
PM01	Часы работы компрессора 1	0	0	9999	часы х 10	MA-F	
PM02	Часы работы компрессора 2	0	0	9999	часы х 10	MA-F	
PM03	Часы работы компрессора 3	0	0	9999	часы х 10	MA-F	
PM04	Пуски компрессора 1	0	0	9999	пуски х 100	MA-F	
PM05	Пуски компрессора 2	0	0	9999	пуски х 100	MA-F	
PM06	Пуски компрессора 3	0	0	9999	пуски х 100	MA-F	
PM31	Часы работы насоса потребителя	0	0	9999	часы х 10	MA-F	
PM32	Часы работы насоса источника	0	0	9999	часы х 10	MA-F	
PM33	Часы работы насоса солнечных панелей	0	0	9999	часы х 10	MA-F	
PM41	Часы работы вентилятора 1	0	0	9999	часы х 10	MA-F	
PM42	Часы работы вентилятора 2	0	0	9999	часы х 10	MA-F	
PM91	Год последнего технического обслуживания	2011	2011	2060		MA-F	
PM92	Месяц последнего технического обслуживания	1	1	12		MA-F	
PM93	День последнего технического обслуживания	1	1	31		MA-F	
	РУЧНОЕ	УПРАВЛЕНИЕ	(MA-M)				
PM11	Включение ручного управления компрессором 1 0: Авто – нормальная работа 1: Manu – ручное управление	0	0	1		МА-М	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PM12	Включение ручного управления компрессором 2 0: Авто – нормальная работа 1: Manu – ручное управление	0	0	1		MA-M	
PM13	Включение ручного управления компрессором 3 0: Авто – нормальная работа 1: Manu – ручное управление	0	0	1		MA-M	
PM21	Принудительное включение компрессора 1 0: выключение компрессора 1: включение компрессора	0	0	1		MA-M	
PM22	Принудительное включение компрессора 2 0: выключение компрессора 1: включение компрессора	0	0	1		MA-M	
PM23	Принудительное включение компрессора 3 0: выключение компрессора 1: включение компрессора	0	0	1		MA-M	
PM51	Включение ручного управления вентилятором 0: Авто – нормальная работа 1: Мапи – ручное управление	0	0	1		MA-M	
PM52	Включение ручного управления насосом 0: Авто – нормальная работа 1: Мапи – ручное управление	0	0	1		MA-M	
PM53	Включение ручного управления насосом солнечных панелей 0: Авто – нормальная работа 1: Manu – ручное управление	0	0	1		MA-M	
PM54	Обеспечение возможности ручного управления насосом источника 0: Авто – нормальная работа 1: Manu – ручное управление	0	0	1		MA-M	
PM61	Принудительное увеличение скорости вентилятора	0.0	0.0	100.0	%	MA-M	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PM62	Принудительное включение насоса потребителя 0: выключение насоса 1: включение насоса	0	0	1		MA-M	
PM63	Принудительное включение насоса солнечных панелей 0: выключение насоса 1: включение насоса	0	0	1		MA-M	
PM64	Принудительное включение насоса источника 0: выключение насоса 1: включение насоса	0	0	1		MA-M	
	КАЛІ	1БРОВКА (МА	-CA)				
PM81	Калибровка датчика температуры обратного теплоносителя	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM82	Калибровка датчика наружной температуры	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM83	Калибровка датчика низкого давления	0.0	-20.0 -290,0	20.0 290.0	Бар psi	MA-CA	
PM84	Калибровка датчика температуры подачи теплоносителя	0.0 0.0	-20.0 -290,0	20.0 290.0	Бар psi	MA-CA	
PM85	Калибровка датчика высокого давления	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM86	Калибровка датчика температуры нагнетания компрессора	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM87	Калибровка датчика температуры в верхней части бака ГВС	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM88	Калибровка датчика температуры в нижней части бака ГВС	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM89	Калибровка датчика температуры теплообменника 1	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM90	Калибровка датчика температуры теплообменника 2	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM91	Калибровка датчика температуры на выходе источника	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM92	Калибровка датчика температуры на входе солнечных панелей	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PM93	Калибровка датчика температуры на выходе солнечных панелей	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM94	Калибровка вспомогательного датчика 1	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM95	Калибровка вспомогательного датчика 2	0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PM96	Калибровка датчика ограничения мощности	0.0	-10.0	10.0	%	MA-CA	
PM97	Калибровка температуры на входе источника	0.0 0.0	-20.0 -36.0	20.0 36.0	°C °F	MA-CA	
PSd2	Пароль специалиста по техническому обслуживанию	-1	-999	9999		MA-F	
	МЕНЮ	УСТАНОВЩИ І	(A (IS)				
	KON	ипрессор (IS	5-C)				
PC28	Максимальное время в режиме охлаждения/обогрева	10	1	999	Мин.	IS-C	
PC29	Максимальное время ГВС	30	1	999	Мин.	IS-C	
PC56	Максимальное количество срабатываний перепускного клапана	5	1	10		IS-C	
	РЕГУЛ	ПИРОВАНИЕ (IS-R)				l .
PC00	Датчик регулирования. 0: датчик подачи 1: датчик обратки	1	0	1		СО-С	
PC02	Ротация компрессоров: 0: FIFO 1: LIFO 2:FIFO+часы 3:LIFO+часы	3	0	3		CO-C	
PC12	Боковая зона регулирования	2.5 4.5	0.1	20.0 36.0	°C °F	IS-R	
PC14	Нейтральная зона регулирования	5.0 9.0	PC15	PC16	°C °F	IS-R	
PC17	Время включения/отключения (нейтральная зона)	20	0	999	сек	IS-R	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PC18	Тип нейтральной зоны:	0	0	1		IS-R	
	0: разделенный 1: целый						
PC19	Фактор часов работы компрессоров	1	0	255		IS-R	
PC20	Фактор количества пусков компрессоров	1	0	255		IS-R	
PC30	Пропорциональный коэффициент	10.0	0.0	20.0	°C	IS-R	
	регулятора модулирующего компрессора	18.0		36.0	°F		
PC31	Интегральный коэффициент ПИ- регулятора модулирующего компрессора	0	0	999	сек	IS-R	
PC62	Уставка автоматического	20.0	PC63	40.0	°C	IS-R	
	переключения режима нагревохлаждения	68.0		104.0	°F		
PC63	Уставка автоматического	10.0	0.0	PC62	°C	IS-R	
	переключения режима охлаждение- нагрев	50.0	32.0		°F		
PC64	Максимальное смещение	-5.0	-10.0	10.0	°C	IS-R	
	динамической уставки в режиме охлаждения	-9.0	-18.0	18.0	°F		
PC65	Наружная температура для	25.0	10.0	PC66	°C	IS-R	
	использования максимального смещения динамической уставки в режиме охлаждения	77.0	50.0		°F		
PC66	Наружная температура для отмены	35.0	PC65	50.0	°C	IS-R	
	максимального смещения динамической уставки в режиме охлаждения	95.0		122.0	°F		
PC67	Максимальное смещение	-10.0	-20.0	20.0	°C	IS-R	
	динамической уставки в режиме отопления	-18.0	-36.0	36.0	°F		
PC68	Наружная температура для	5.0	-10.0	PC69	°C	IS-R	
	использования максимального смещения динамической уставки в режиме отопления	41.0	14.0		°F		

Код	Описание параметров	По	Мин.	Макс	Ед.	Меню	Примеча
		умолчанию			Изм.		ния
PC69	Наружная температура для отмены	15.0	PC68	25.0	°C	IS-R	
	максимального смещения	59.0		77.0	°F		
	динамической уставки в режиме						
	отопления						
PC89	Время ожидания для моторизованного	30	0	999	Сек	IS-R	
	клапана						
PC90	Максимальная мощность машины	100.00	0.00	100.00	%	IS-R	
PC91	Включить откачку:	0	0	2		IS-R	
	0 : Отключено						
	1 : По времени						
	2 : По давлению						
PC92	Дельта давления для отключения	1.5	0.0	5.0	Бар	IS-R	
	откачки	21.7		72,5	psi		
PC93	Задержка пуска компрессора от	60	0	999	Сек	IS-R	
	момента открытия электромагнитного						
	клапана						
PC94	Задержка закрытия	1	0	240	Сек	IS-R	
	электромагнитного клапана при						
	выключении компрессора						
	ВЕН	тиляция (19	5-F)				
PF01	Производительность вентилятора	0 (Авто.)	0	4		IS-F	
	теплообменника:						
	0: Автоматически						
	1: Скорость 1 (пар. РF61)						
	2: Скорость 2 (пар. РF62)						
	3: Скорость 3 (пар. PF63) 4: Скорость 4 (пар. PF64)						
		BMOPO3KA(IS	-D)				
D410			- I	4		10.5	
Pd10	Тип размораживания 0: нет	4	0	4		IS-D	
	1: время						
	2: температура						
	3: адаптивно						
	4: адаптивно + время						
Pd18	Время до окончания разморозки	60	0	600	Сек	CO-D	
Pd21	Наружная температура для обнуления	5.0	Pd22	20.0	°C	IS-D	
	времени адаптивного оттаивания			68.0	°F		
		<u> </u>					

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
Pd22	Наружная температура для задания максимального времени адаптивного оттаивания	-5.0	-30.0 -22.0	Pd21	°C °F	IS-D	
Pd23	Максимальная задержка размораживания	3600	Pd05	9600	Сек	IS-D	
Pd31	Уставка нагревателя поддона для сбора конденсата во время оттаивания	3.0 37.4	-10.0 14.0	30.0 86.0	°C °F	IS-D	
Pd32	Дифференциал нагревателя поддона сбора конденсата во время оттаивания	5.0 9.0	0.0	20.0 36.0	°C °F	IS-D	
	насос и	РЕЛЕ ПОТОК	A (IS-P)				
PP07	Выключение насоса при оттаивании	Нет (0)	Нет (0)	ДА (1)		IS-P	Актива- ция отключе- ния насоса в режиме оттайки будет опреде- ляться нижним датчиком
PP11	Метод активации насоса: 0 — Насос всегда активен при включенном агрегате 1 — Насос активируется только по запросу регулятора температуры 2 — Насос активен по запросу регулятора с циклом обновления	2	0	2		IS-P	
PP12	Задержка насоса перед циклом обновления	5	1	99	Мин.	IS-P	
PP13	Время включения насоса во время цикла обновления	2	1	99	Мин.	IS-P	
PP15	Количество дней с насосом в режиме ВЫКЛ для активации функции «антизакисание»	3	0	30	Дни	IS-P	Если PP15=0, функция не активна.

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PP16	Время работы насоса в режиме «антизакисание»	30	5	999	Сек	IS-P	
PP21	Метод активации насоса источника: 0 – Насос всегда активен при включенном агрегате 1 – Насос активируется только по запросу регулятора температуры 2 – Насос активен по запросу регулятора с циклом обновления	0	0	2		IS-P	
PP31	Датчик регулятора солнечных панелей: 0 – На входе 1 – На выходе	0	0	1		IS-P	
PP32	Дифференциал активации насоса солнечных панелей	5.0 9.0	PP33	20.0 36.0	°C °F	IS-P	
PP33	Дифференциал отключения насоса солнечных панелей	3.0 5.5	0.0	PP32	°C °F	IS-P	
PP34	Время включения насоса во время цикла обновления	2	0	999	Мин.	IS-P	
PP35	Задержка насоса перед циклом обновления	5	0	999	Мин.	IS-P	
PP36	Уставка высокой температуры в системе ГВС	70.0 158.0	0.0 32.0	90.0 194.0	°C °F	IS-P	
PP37	Дифференциал высокой температуры в системе ГВС	10.0 18.0	0.0	20.0 36.0	°C °F	IS-P	
PP38	Уставка высокой температуры солнечных панелей	100.0 212.0	0.0 32.0	130.0 266.0	°C °F	IS-P	
PP39	Дифференциал высокой температуры солнечных панелей	10.0 18.0	0.0	20.0 36.0	°C °F	IS-P	
	АНТИ-Ј	ТЕГИОНЕЛЛА	(IS-L)				
PL01	Включение цикла борьбы с легионеллами: 0: отключено 1: включено	0	0	1		IS-L	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PL02	Интервал включения для выполнения цикла борьбы с легионеллами	7	1	60	Дни	IS-L	Питание подано. Работа системы не- эффектив на.
PL03	Включает цикл борьбы с легионеллами при включении питания 0: отключено 1: включено	0	0	1		IS-L	
PL04	Максимальная продолжительность цикла борьбы с легионеллами	120	1	999	Мин.	IS-L	
PL05	Уставка защиты от легионелл	70.0 158.0	SPB1	80.0 176.0	°C °F	IS-L	
	ВСПОМОГАТ	ЕЛЬНЫЙ ОБО	FPEB (IS	5-A)	<u>'</u>	<u>'</u>	
Pr06	Уставка вспомогательного обогрева в режиме оттаивания	15.0 59.0	0.0 32.0	70.0 158.0	°C °F	IS-A	
Pr07	Нейтральная зона дополнительного обогрева в режиме оттаивания	5.0 9.0	0.1 0.1	10.0 18.0	°C °F	IS-A	
Pr08	Приоритет вспомогательного отопления 0: Отключено 1: Нагреватель, затем бойлер в режиме интеграции (нагреватель остается включенным при включении бойлера) 2: Нагреватель, затем бойлер в режиме замены (нагреватель отключается при включении котла) 3: Бойлер, затем нагреватель в режиме интеграции (бойлер остается включенным при включении нагревателя) 4: Бойлер и нагреватель в режиме замены (бойлер выключается при включении нагревателя)	0	0	4	0	IS-A	Активиру ются только включенн ые дополните льные ступени нагрева.
Pr09	Задержка активации первой ступени вспомогательного нагрева (нагреватель или бойлер)	60	0	600	60	IS-A	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
Pr10	Задержка включения второй ступени вспомогательного нагрева (нагреватель или бойлер)	60	0	600	60	IS-A	
Pr11	Задержка активации третьей ступени вспомогательного нагрева (нагреватель или бойлер)	60	0	600	60	IS-A	
Pr12	Уставка вспомогательного нагрева воды для систем отопления с низкой температурой	30.0 86.0	0.0 32.0	70.0 158.0	30.0 86.0	IS-A	
Pr13	Нейтральная зона для систем отопления с низкой температурой	5.0 9.0	0.1 0.1	10.0 18.0	5.0 9.0	IS-A	
Pr14	Задержка дополнительного нагрева при низкой температуре воды в системе отопления	60	1	600	60	IS-A	
Pr22	Уставка нагревателя бака ГВС в режиме оттаивания	30.0 86.0	10.0 50.0	70.0 158.0	30.0 86.0	IS-A	
Pr23	Дифференциал нагревателя бака ГВС в режиме оттаивания	10.0 18.0	0.0 0.0	20.0 36.0	10.0 18.0	IS-A	
Pr24	Задержка включения нагревателя ГВС, в интеграции с тепловым насосом	30	0	999	30	IS-A	
Pr25	Задержка включения дополнительного отопления, когда уставка не достигнута	20	0	999	20	IS-A	
	ВСПОМОГАТЕ		оды (IS	-U)*			
PU01	Вид вспомогательного регулирования 1: 0: Охлаждение 1: Отопление 2: Прямое 3: Обратное	0	0	3		IS-U	
PU03	Дифференциал регулирования охлаждения	2.0	0.0	36.0		IS-U	
PU04	Минимальное значение вспомогательного выхода 1	0.0	0.0	100.0	%	IS-U	
PU05	Максимальное значение вспомогательного выхода 1	100.0	0.0	100.0	%	IS-U	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PU06	Вид аналогового вспомогательного регулирования 1: 0: Минимум при выключенном устройстве 1: Ступень активации	1	0	1		IS-U	
PU07	Включить регулирование также при выключенном устройстве: 0: Отключено 1: Включено	0	0	1		IS-U	
PU08	Вспомогательный датчик регулирования 1: 0: Отключено 1: Температура на входе 2: Температура на выходе 3: Температура верхней части бака ГВС 4: Температура нижней части бака ГВС 5: Температура наружного воздуха 6: Температура теплообменника 1 7: Температура теплообменника 2 8: Температура на выходе источника 9: Температура SP (солнечных панелей) на входе 10: Температура SP (солнечных панелей) на выходе 11: Температура SP (солнечных компрессора 12: Температура всасывания 13: Давление конденсации 14: Давление испарения 15: Датчик AUX1 16: Датчик AUX2 17: Ограничение мощности 18: Температура на входе источника	0	0	18		IS-U	
PU10	Дифференциал нагрева вспомогательного регулятора 1	2.0	0.0	36.0		IS-U	
PU11	Задержка вспомогательного сигнала тревоги 1	10	0	999	Сек	IS-U	

	Описание параметров	По	Мин.	Макс	Ед.	Меню	Примеча
		умолчанию			Изм.		ния
PU12	Интегральный коэффициент	0	0	999	Сек	IS-U	
	вспомогательного регулирования 1						
PU13	Дифференциальный коэффициент	0	0	999	Сек	IS-U	
	вспомогательного регулирования 1						
PU21	Вид вспомогательного регулирования	0	0	3		IS-U	
	2:						
	0: Охлаждение						
	1: Отопление						
	2: Прямое						
	3: Обратное						
PU23	Дифференциал регулирования	2.0	0.0	36.0		IS-U	
	охлаждения						
PU24	Минимальное значение	0.0	0.0	100.0	%	IS-U	
	вспомогательного выхода 2						
PU25	Максимальное значение	100.0	0.0	100.0	%	IS-U	
	вспомогательного выхода 2						
PU26	Вид аналогового вспомогательного	1	0	1		IS-U	
	регулирования 2:						
	0: Минимум при выключенном						
	устройстве						
	1: Ступень активации						
PU27	Включить регулирование также при	0	0	1		IS-U	
	выключенном устройстве:						
	0: Отключено						
	1: Включено						

Код	Описание параметров	По	Мин.	Макс	Ед.	Меню	Примеча
		умолчанию			Изм.		ния
PU28	Вспомогательный датчик	0	0	18		IS-U	
	регулирования 2:						
	0: Отключено						
	1: Температура на входе						
	2: Температура на выходе						
	3: Температура верхней части бака						
	FBC						
	4: Температура нижней части бака ГВС						
	5: Температура наружного воздуха						
	6: Температура теплообменника 1						
	7: Температура теплообменника 2						
	8: Температура на выходе источника						
	9: Температура SP (солнечных						
	панелей) на входе						
	10: Температура SP (солнечных						
	панелей) на выходе						
	11: Температура нагнетания						
	компрессора						
	12: Температура всасывания						
	13: Давление конденсации						
	14: Давление испарения						
	15: Датчик AUX1						
	16: Датчик AUX2						
	17: Ограничение мощности						
	18: Температура на входе источника						
PU30	Дифференциал нагрева	2.0	0.0	36.0		IS-U	
	вспомогательного регулятора 2						
PU31	Задержка вспомогательного сигнала	10	0	999	Сек	IS-U	
	тревоги 2						
PU32	Интегральный коэффициент	0	0	999	Сек	IS-U	
	вспомогательного регулирования 2						
PU33	Дифференциальный коэффициент	0	0	999	Сек	IS-U	
	вспомогательного регулирования 2						
	A	ВАРИИ (IS-S))	1			
PA01	Уставка антизамерзания для	5.0	PA03	10.0	°C	IS-S	
	включения агрегата в режиме	41.0		50.0	°F		
	отопления						
PA02	Дифференциал антизамерзания	2.0	0.1	10.0	°C	IS-S	
- '		3.6	0,2	18.0	°F		
PA03	Уставка аварии защиты от замерзания	3.0	-30.0	PA01	°C	IS-S	
1 703	уставка аварии защиты от замерзания	37.4	-30.0	I AUI	°F	13-3	
		37.7	22.0		ı		

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PA04	Дифференциал аварии	2.0	0.1	10.0	°C	IS-S	
	антизамерзания	3.6	0,2	18.0	°F		
PA14	Уставка предварительной	5.0	PA03	10.0	°C	IS-S	
	сигнализации антизамерзания	41.0		50.0	°F		
PA15	Дифференциал предварительной	2.0	0.1	10.0	°C	IS-S	
	сигнализации антизамерзания	3.6	0.1	18.0	°F		
PA80	Включение сигнализации по часам работы компрессора	ДА (1)	Нет (0)	ДА (1)		IS-S	
PA81	Включение сигнализации по часам работы насоса	ДА (1)	Нет (0)	ДА (1)		IS-S	
PA82	Включение сигнализации по часам работы вентилятора	ДА (1)	Нет (0)	ДА (1)		IS-S	
PA83	Включение сигнализации окончания размораживания	Нет (0)	Нет (0)	ДА (1)		IS-S	
	ДРУГИЕ	ПАРАМЕТРЫ	(IS-V)				
PH01	Нижний предел шкалы датчика	0.0	-1.0	PH02	Бар	IS-V	
	низкого давления	0.0	-14,5		psi		
PH02	Верхний предел шкалы датчика	20.0	PH01	15.0	Бар	IS-V	
	низкого давления	290.0		217.5	psi		
PH03	Нижний предел шкалы датчика	0.0	-1.0	PH04	Бар	IS-V	
	высокого давления	0.0	-14,5		psi		
PH04	Верхний предел шкалы датчика	50.0	PH03	60.0	Бар	IS-V	
	высокого давления	725.0		870.0	psi		
PH05	Принудительное открытие трёхходового клапана системы при сигнализации о замерзании	Да (1)	Нет (0)	Да (1)		IS-V	
PH06	Определяет метод выключения агрегата: 0 = С помощью клавиши ESC (1 = С цифрового входа 2 = С клавиши и с цифрового входа 3 = От мониторинга 4 = С клавиши и от мониторинга	0	0	4		IS-V	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PH07	Определяет метод переключения: 0 = Отключено 1 = С цифрового входа 2 = От внешнего датчика температуры 3 = От датчика регулятора 4 = От вспомогательного датчика 5 = От мониторинга	0	0	5		IS-V	Переключ ение с клавиши (меню «Пользова тель/Режи м») всегда активно, но никогда не имеет приоритет а над другими режимами .
PH09	Язык: 0 = английский 1 = итальянский	1	0	1		IS-V	
PH10	Скорость передачи данных CAN 1= 20K 2= 50K 3= 125K 3= 500K	3	1	4		IS-V	
PH11	Адрес MODBUS контроллера	1	1	247		IS-V	
PH12	Скорость передачи данных MODBUS (1=2400, 2=4800, 3=9600, 4=19200)	3	1	4		IS-V	
PH13	Четность MODBUS (0=нет, 1=нечетный, 2=четный)	2	0	2		IS-V	
PH14	StopBit MODBUS (0=1 бит, 1=2 бита)	0	0	1		IS-V	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PH15	Восстановить заводские параметры по умолчанию	Нет (0)	Нет (0)	Да (1)		IS-V	Дожди- тесь повтор- ного считыва- ния значения 0 в конце восстано- вления.
PH16	Нижний предел шкалы датчика ограничения мощности	0.0	0.0	PH17	%	IS-V	
PH17	Верхний предел шкалы датчика ограничения мощности	100.0	PH16	100.0	%	IS-V	
PH18	Очистить историю	Нет (0)	Нет (0)	Да (1)		IS-V	
PH29	Включение динамической уставки	Нет (0)	Нет (0)	Да (1)		IS-V	
PSd3	Пароль установщика	-2	-999	9999		IS-V	
	ПАРАМЕТРЬ	і производі	ителя (С	0)			
	ПАРАМЕТ	РЫ НАСТРОЕ	K (CO-I)				
PG00	Тип агрегата: 0= Стандарт 1= С ГВС	0	0	1		CO-I	
PG01	Активация перегрева EVDRIVE: 0= Отключено 1= Включено	0	0	1		CO-I	
PG02	Тип компрессоров: 0 = компрессор 1 ВклВыкл 1 = компрессор 2 ВклВыкл 2 = компрессор 3 ВклВыкл 3 = модулирующий компрессор 1 4 = 1 модулирующий компрессор + 1 ВклВыкл 5 = 1 модулирующий компрессор + 2 ВклВыкл	3	0	5		CO-I	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PG03	Модели компрессоров: 0= SANYO C-SDP205H02B 1= TOSHIBA DA422A3F-27M 2 = LG AR055VAD 3 = LG GJT240DAA.A11EMB 4 = LG GKT141DAA_EMB 5 = LG GPT425DAA A11EMB 6 = БОК HGX34e/215-4 S 7 = БРИСТОЛЬ V80J503MB2A	0	0	7		CO-I	
PG04	Инвертор (недоступен в с-pro 3 nano HPRU) 0= Отключено 1= Включено	0	0	1		CO-I	
PG05	Включить расширение: 0: Отключено 1: Включено	0	0	1		CO-I	
PG06	Байпас горячего газа EVDRIVE: 0= Отключено 1= Включено	0	0	1		CO-I	
	ПАРАМЕТРЬ	ы компрессо	OPA (CO-	C)			
PC03	Время включения между 2 компрессорами	10	0	999	Сек	CO-C	
PC04	Минимальное время работы компрессора	20	0	999	Сек	CO-C	
PC05	Минимальное время останова компрессора	120	0	999	Сек	CO-C	
PC06	Минимальное время между двумя включениями одного и того же компрессора	360	0	999	Сек	CO-C	
PC07	Активация задержки срабатывания защиты компрессора при переключении режима	1	0	1		CO-C	
PC08	Задержка срабатывания защиты при переключении клапана реверса циклвдля ГВС (из режима охлаждения)	30	0	999	Сек	CO-C	
PC09	Минимальное время останова машины при смене режима работы	5	0	999	Мин.	CO-C	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PC10	Состояние компрессора в режиме ошибки датчика 0: ВЫКЛ – выкл 1: ВКЛ – вкл	0	0	1		CO-C	
PC11	Время выключения между 2 компрессорами	20	0	999	Мин.	CO-C	
PC13	Время включения между 2 компрессорами при оттаивании	5	0	999	Сек	СО-С	
PC54	Максимальное время активации перепуска горячего газа	30	1	999	Сек	СО-С	
PC55	Максимальное время деактивации перепуска горячего газа	30	1	999	Сек	CO-C	
	ПАРАМЕТРЫ	РЕГУЛИРОВ	чния (со)-R)			
PC15	Минимальное значение нейтральной зоны регулирования	1.0 1.8	0.1	PC16	°C °F	CO-R	
PC16	Максимальное значение нейтральной зоны регулирования	10.0 18.0	PC15	20.0 36.0	°C °F	CO-R	
PC21	Минимальное значение уставки охлаждения	5.0 41.0	-30.0 -22.0	PC22	°C °F	CO-R	
PC22	Максимальное значение уставки охлаждения	10.0 50.0	PC21	40.0 104.0	°C °F	CO-R	
PC23	Минимальное значение уставки нагрева	30.0 86.0	20.0 68.0	PC24	°C °F	CO-R	
PC24	Максимальное значение уставки нагрева	45.0 113.0	PC23	80.0 176.0	°C °F	CO-R	
PC34	Процент мощности, выдаваемой модулирующим компрессором	100.00	0.00	100.00	%	CO-R	
PC35	Процент мощности, выдаваемой первым компрессором OnOff	0.00	0.00	100.00	%	CO-R	
PC36	Процент мощности, выдаваемой вторым компрессором OnOff	0.00	0.00	100.00	%	CO-R	
PC49	Позволяет управлять сигналом модулирующего компрессора с помощью PRS (параметр PC46/PC47)	Да (1)	Нет (0)	Да (1)		CO-R	
PC50	Тип байпаса: 0= Отключено 1= Режим охлаждения 2= Режим обогрев 3= Всегда	2	0	3		CO-R	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния		
PC51	Уставка давления байпаса (охлаждение)	5.0 72,5	0.1	15.0 217.5	Бар пси	CO-R			
PC52	Уставка давления байпаса (нагрев)	5.0 72,5	0.1	15.0 217.5	Бар пси	CO-R			
PC53	Дифференциал низкого давления для частичного охлаждения	2.0 29.0	0.1	5.0 72,5	Бар пси	CO-R			
PC80	Требуемое предельное значение мощности (разгрузка) при использовании модулирующего компрессора	100,0	0,0	100,0	%	CO-R	Если PC80=10 0%, функция отключе на.		
PC81	Ограничение мощности (разгрузка) в режиме охлаждения	25,0 29,0	SPC1	PA27	°C °F	CO-R			
PC82	Ограничение мощности (разгрузка) в режиме отопления	15,0 29,0	PA26	SPH1	°C °F	CO-R			
PC83	Дифференциал ограничения мощности разгрузки	5,0 9.0	0.0	20.0 36.0	°C °F	CO-R			
PC85	Режим управления возвратом масла модулирующего компрессора: 0=Отключено 1=Только режим модуляции 2=Режим модуляции и включения/выключения	0	0	2		CO-R			
PC86	Время задержки сигнализации о снижении порога для активации возврата масла	5	0	999	Мин.	CO-R			
PC87	Время принудительной работы компрессора с максимальной скоростью для активации возврата масла	60	0	999	Сек	CO-R			
PC88	Минимальный порог мощности для активации возврата масла	40.0	PC32	100.0	%	CO-R			
ВЕНТИЛЯТОР (СО-F)									
PF02	Включение вентилятора только при включенном компрессоре	Нет (0)	Нет (0)	Да (1)		CO-F			
PF03	Включение вентилятора во время размораживания	Нет (0)	Нет (0)	Да (1)		CO-F			

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PF04	Уставка внешней температуры, для вентилятора в режиме стекания	5.0 41.0	0.0	20.0 68.0	°C °F	CO-F	
PF10	Принудительное включение вентилятора в режиме аварии по датчику конденсации	0.0	0.0	100.0	%	CO-F	
PF11	Уставка вентилятору в режиме охлаждения	20.0 290.0	5.0 72,5	45.0 652.5	Бар пси	CO-F	
PF12	Зона вентилятору в режиме охлаждения	12.0 174.0	0.1 1.5	50.0 750.0	Бар пси	CO-F	
PF14	Уставка принудительного включения на максимум в режиме охлаждения	26.0 377.0	15.0 217.5	45.0 652.5	Бар пси	CO-F	
PF15	Дифференциал принудительного включения на максимум в режиме охлаждения	2.0 29.0	0.1 1.5	5.0 72,5	Бар пси	CO-F	
PF16	Нижний предел включения на максимум вентилятора в режиме охлаждения	30.0	0	PF32	%	CO-F	
PF17	Верхний предел включения на максимум вентилятора в режиме охлаждения	100.0	PF31	100.0	%	CO-F	
PF18	Отключить вентилятор при достижении нижнего предела производительности вентилятора в режиме охлаждения	Да (1)	Нет (0)	Да (1)		CO-F	
PF19	Дифференциал отключения при достижении нижнего предела при максимальном охлаждении	2.0 29.0	0.0	5.0 72,5	Бар пси	CO-F	
PF21	Уставка вентилятору в режиме обогрева	9.0 130,5	0,5 7.3	15.0 217.5	Бар пси	CO-F	
PF22	Зона вентилятору в режиме обогрева	2.0 29.0	0.1 1.5	15.0 217.5	Бар пси	CO-F	
PF24	Уставка принудительного включения на максимум в режиме обогрева	3.2 46.4	0,5 7.3	20.0 290.0	Бар пси	CO-F	
PF25	Дифференциал принудительного включения на максимум в режиме обогрева	0,5 7.3	0.1 1.5	5.0 72,5	Бар пси	CO-F	
PF26	Минимальное значение инвертора	0.0	0.0	50.0	%	CO-F	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PF27	Время ускорения при включении вентилятора	4	0	999	Сек	CO-F	
PF31	Нижний предел регулирования вентилятора	30.0	0	PF32	%	CO-F	
PF32	Верхний предел регулирования вентилятора	80.0	PF31	100.0	%	CO-F	
PF33	Разрешить выключение вентилятора при снижении ниже минимального уровня вентиляции	Да (1)	Нет (0)	Да (1)		CO-F	
PF34	Дифференциал отключения вентилятора при снижении ниже минимального уровня вентиляции	2.0 29.0	0.0	5.0 72,5	Бар пси	CO-F	
PF36	Включить предварительный запуск вентилятора конденсации при высоких внешних температурах	Нет (0)	Нет (0)	Да (1)		CO-F	
PF37	Порог температуры наружного воздуха для предварительного запуска вентилятора конденсации	30.0 86.0	20.0 68.0	40.0 104.0	°C °F	CO-F	
PF38	Скорость предварительного запуска вентилятора	50.0	0	100.0	%	CO-F	
PF39	Задержка компрессоров от предварительного запуска вентилятора конденсации	5	0	999	сек	CO-F	
PF51	Уставка вентилятора в режим оттаивания	20.0 290.0	5.0 72,5	45.0 652.5	Бар пси	CO-F	
PF52	Зона вентилятора в режиме оттаивания	4.0 58.0	0.1 1.5	50.0 750.0	Бар пси	CO-F	
PF54	Уставка принудительного включения на максимум в режиме оттаивания	26.0 377.0	15.0 217.5	45.0 652.5	Бар пси	CO-F	
PF55	Дифференциал принудительного включения на максимум в режиме оттаивания	2.0 29.0	0.1 1.5	5.0 72,5	Бар пси	CO-F	
PF56	Активация отключения вентилятора при температуре ниже минимального уровня вентиляции в режиме оттаивания	Да (1)	Нет (0)	Да (1)		CO-F	

Код	Описание параметров	По	Мин.	Макс	Ед.	Меню	Примеча
		умолчанию			Изм.		ния
PF57	Дифференциал выключения ниже минимального предела вентиляции, максимального в режиме	2.0 29.0	0.0	5.0 72,5	Бар пси	CO-F	
	охлаждения						
PF58	Верхний предел максимального регулирования вентиляции в режиме оттаивания	100.0	PF59	100.0	%	CO-F	
PF59	Нижний предел максимального регулирования вентиляции в режиме оттаивания	30.0	0.0	PF58	%	CO-F	
PF60	Тип конденсации: 0: Воздух (вентилятор) 1: Вода без обратки (модул. насос) 2: Вода с обраткой (модул. насос)	0	0	2		CO-F	
PF61	Скорость 1 в режиме фиксированного регулирования	20.0	0.0	100.0	%	CO-F	PF01 = 1
PF62	Скорость 2 в режиме фиксированного регулирования	40.0	0.0	100.0	%	CO-F	PF01 = 2
PF63	Скорость 3 в режиме фиксированного регулирования	60.0	0.0	100.0	%	CO-F	PF01 = 3
PF64	Скорость 4 в режиме фиксированного регулирования	80.0	0.0	100.0	%	CO-F	PF01 = 4
PF65	Время принудительной вентиляции по сигналу тревоги низкого давления	0	0	99	Мин.	CO-F	
PF66	Скорость предварительной вентиляции	100.00	PF26	100.00	%	CO-F	
PF67	Интегральная составляющая регулирования вентиляторов	0	0	999	Сек	CO-F	
PF68	Дифференциальная составляющая регулирования вентиляторов	0	0	999	Сек	CO-F	
	РАЗМО	РАЖИВАНИЕ	(CO-D)				
Pd01	Выбор датчика для запуска оттаивания 1: Температура испарения 2: Датчик температуры теплообменника (среднее значение) 3: Датчик температуры теплообменника (меньшее значение)	1	1	3		CO-D	
Pd02	Настройка давления запуска оттаивания	-5,0 23,0	Pd14	20,0 68,0	°C °F	CO-D	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
Pd03	Выбор датчика для завершения оттаивания 1: Температура испарения 2: Датчик конденсации 3: Датчик температуры теплообменника (среднее значение) 4: Датчик температуры теплообменника (меньшее значение)	1	1	4		CO-D	
Pd04	Уставка температуры окончания оттаивания	15.0 59.0	0.0 32.0	99.0 210.0	°C °F	CO-D	
Pd05	Задержка оттаивания	1200	0	Pd23	Сек	CO-D	
Pd06	Максимальное время оттаивания	300	60	1200	Сек	CO-D	
Pd07	Остановка компрессора перед оттаиванием	30	0	600	Сек	CO-D	
Pd08	Продолжительность стекания конденсата	30	0	600	Сек	CO-D	
Pd11	Дельта между наружной температурой и температурой испарения	5.0 9.0	0.0	50.0 90.0	°C °F	CO-D	
Pd12	Дельта давления для динамического оттаивания	10.0 50.0	0.0	50.0 90.0	Бар пси	CO-D	
Pd13	Время стабилизации после оттаивания (самообучение)	5	0	99	Мин.	CO-D	
Pd14	Уставка принудительного оттаивания	-25.0 -13.0	-40,0 -40,0	Pd02	°C °F	CO-D	
Pd15	Дифференциал принудительного оттаивания	5.0 9.0	0.0	30.0 54.0	°C °F	CO-D	
Pd16	Задержка принудительного оттаивания	60	0	999	Сек	CO-D	
Pd17	Дифференциал для сброса счетчика оттаивания	10.0 18.0	0.0	30.0 54.0	°C °F	CO-D	
Pd19	Минимальный предел запуска оттаивания	-40,0 -40,0	-40,0 -40,0	Pd02	°C °F	CO-D	
Pd30	Включает подогрев поддона для сбора конденсата во время размораживания	Нет (0)	Нет (0)	Да (1)		CO-D	
	насос и	РЕЛЕ ПОТОК	A (CO-P)				
PP04	Минимальная задержка между включением насоса и включением компрессора	60	0	999	Сек	CO-P	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PP05	Минимальная задержка между выключением компрессора и выключением насоса	60	0	999	Сек	СО-Р	
PP06	Время выключения насоса для переключения трехходового клапана	60	0	999	Сек	СО-Р	
PP09	Время работы насосов при активной сигнализации реле расхода	30	0	999	Сек	СО-Р	
PP10	Время работы насоса при низкой температуре воды на выходе (сигнализация защиты от замерзания)	15	0	999	Сек	CO-P	
	ПАРАМЕТРЫ	АНТИЛЕГИОН	ЕЛЛА (С	O-L)			
PL08	Время поддержания режима антилегионелла	5	1	999	Мин.	CO-L	
	ПАРАМЕТРЫ ДОПО.	ЛНИТЕЛЬНОГ	О НАГРЕ	BA (CO-A	()		
Pr04	Включение дополительного нагрева для защиты от замерзания в режиме охлаждения	1	0	1		CO-A	После выключен ия компрессо ров и задержки Pr09 – 11
Pr05	Включение дополнительного нагрева в режиме оттаивания	0	0	1		CO-A	
Pr15	Работа дополнительного нагрева при достижении предела регулирования: 0 = Отключено 1 = Интеграция 2 = Интеграция, затем замена 3 = Замена	2	0	3		CO-A	Также ГВС
Pr16	Уставка дополнительного нагрева (наружный воздух) в режиме интеграции	0.0 32.0	-30.0 -22.0	10.0 50.0	°C °F	CO-A	
Pr17	Дифференциал дополнительного нагрева в режиме интеграции	10.0 18.0	0.0	20.0 36.0	°C °F	CO-A	
Pr18	Уставка дополнительного нагрева (наружный воздух) в режиме замены	-10.0 14.0	-30.0 -22.0	10.0 50.0	°C °F	CO-A	
Pr19	Дифференциал дополнительного нагрева в режиме замены	10.0 18.0	0.0	20.0	°C °F	CO-A	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
Pr20	Восстановление работы компрессора при отключении нагрева ТЭН/бойлер 0 = Компрессор отключен 1 = Компрессор включен	1	0	1		CO-A	
Pr28	Использование нагревателя антизамерзания: 0=Нет 1=Только нагреватель на DO 2=Только при включении агрегата (в зимнем режиме) 3=DO нагревателя + пуск агрегата	3	0	3		CO-A	
	A	варии (со-ѕ)	1			
PA05	Задержка сигнала тревоги защиты от замерзания	30	0	999	Сек	CO-S	
PA06	Уставка защиты от замерзания во время оттаивания	3.0 43,5	PA08	15.0 217.5	Бар пси	CO-S	Для активации
PA07	Дифференциал защиты от замерзания во время оттаивания	1.0 14.5	0.1 1.5	4.0 58.0	Бар	CO-S	насоса, если PP07=1
PA08	Уставка сигнала тревоги защиты от замерзания во время оттаивания	1.0 14.5	0.0	PA06	Бар пси	CO-S	
PA09	Дифференциал сигнала тревоги защиты от замерзания во время оттаивания	1.0 14.5	0.1 1.5	4.0 58.0	Бар	CO-S	
PA10	Задержка аварийного сигнала потока при активации насоса	30	1	999	Сек	CO-S	
PA11	Задержка аварийного сигнала потока в нормальном режиме работы	10	1	999	Сек	CO-S	
PA12	Количество срабатываний аварийной сигнализации потока/авария с ручным сбросом	5	0	10		CO-S	
PA19	Задержка сигнала аварии датчика	10	0	240	Сек	CO-S	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PA20	Реакция на температурный сигнал тревоги: 0 = Отключено 1 = Только сигнал 2 = Блокировка устройства с автоматическим сбросом 3 = Блокировка устройства с автоматическим сбросом при первом срабатывании, затем с ручным сбросом	0	0	3	Сек	CO-S	
PA21	Максимальное время фиксации температурной аварии до ручного сброса	5	0	99	Мин.	CO-S	
PA22	Дифференциал сброса сигнала аварии по температуре	2.0 3.6	0.1 0,2	10.0 18.0	°C °F	CO-S	
PA23	Задержка срабатывания аварии по температуре	30	1	999	Сек	CO-S	
PA24	Задержка аварии по температуре при включении	15	0	999	Сек	CO-S	
PA25	Уставка высокой температуры в режиме обогрева	50.0 122.0	SPH1	80.0 176.0	°C °F	CO-S	
PA26	Уставка низкой температуры в режиме отопления	10.0 50.0	0.0 32.0	SPH1	°C °F	CO-S	
PA27	Уставка высокой температуры в режиме охлаждения	30.0 86.0	SPC1	99.0 210.0	°C °F	CO-S	
PA28	Уставка низкой температуры в режиме охлаждения	6.0 42.8	PA01	SPC1	°C °F	CO-S	
PA29	Уставка высокой температуры в режиме ГВС	60.0 140.0	SPB1	70.0 158.0	°C °F	CO-S	
PA30	Сигнализация низкой температуры установлена в режиме ГВС	25.0 77.0	20.0 68.0	SPB1	°C °F	CO-S	
PA31	Уставка высокой температуры режима «антилегионелла»	70.0 158.0	SPB1	95.0 203.0	°C °F	CO-S	
PA38	Включает аварию RTC	Нет (0)	Нет (0)	Да (1)		CO-S	
PA39	Тип сигнала тревоги RTC	Авто (0)	Авто (0)	Ручн (1)		CO-S	
PA40	Уставка низкого давления в режиме охлаждения	3.0 43,5	PA45	PA50	Бар пси	CO-S	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PA41	Дифференциал низкого давления в	1.0	0.1	4.0	Бар	CO-S	
	режиме охлаждения	14.5	1.5	58.0	пси		
PA42	Задержка аварии низкого давления при включении компрессора	120	0	999	Сек	CO-S	
PA43	Количество аварий низкого давления в час для ручного сброса	3	0	5		CO-S	
PA44	Авария низкого давления во время байпаса 0 = Отключено 1 = Только охлаждение 2 = Только отопление (включая ГВС) 3 = Оба режима работы	2	0	3		CO-S	
PA45	Уставка низкого давления во время	1.0	0.1	PA40	Бар	CO-S	
	байпаса	14.5	1.5		пси		
PA46	Дифференциал изкого давления во	0,5	0.1	4.0	Бар	CO-S	
	время байпаса	7.3	1.5	58.0	пси		
PA47	Задержка срабатывания аварийной сигнализации низкого давления при запуске компрессора	5	0	PA42	Сек	CO-S	
PA48	Уставка высокого давления	42.0 609.0	PA52	45.0 652.5	Бар пси	CO-S	
PA49	Дифференциал высокого давления	7.0 101.5	0.1 1.5	10.0 145.0	Бар пси	CO-S	
PA50	Уставка предварительной аварии	4.0	PA40	10.0	Бар	CO-S	
	низкого давления при охлаждении	58.0		145.0	пси		
PA51	Дифференциал предварительной	0,5	0.1	4.0	Бар	CO-S	
	аварии низкого давления при охлаждении	7.3	1.5	58.0	пси		
PA52	Уставка предварительной аварии	37.0	16.0	PA48	Бар	CO-S	
	высокого давления	536.5	232.0		пси		
PA53	Дифференциал предварительной	5.0	0.1	10.0	Бар	CO-S	
	аварии высокого давления	72,5	1.5	145.0	пси		
PA54	Процентное снижение мощности в режиме предварительной аварии	5.00	0	100.00	%	CO-S	
PA55	Время активации/снятия зоны предварительной аварии	10	1	999	Сек	CO-S	
PA56	Задержка сигнала тревоги низкого давления	10	0	999	Сек	CO-S	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PA66	Задержка активации аварийного отключения насоса солнечных панелей	10	0	999	Сек	CO-S	
PA67	Тип сброса аварии насоса солнечных панелей 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA68	Задержка активации аварийного отключения насоса источника	10	0	999	Сек	CO-S	
PA69	Тип сброса аварии насоса источника 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA70	Задержка активации аварийного отключения компрессора	10	0	999	Сек	CO-S	
PA71	Тип сброса аварии компрессора 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA72	Задержка активации аварийного отключения вентиляторов	10	0	999	Сек	CO-S	
PA73	Тип сброса аварии вентиляторов 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA74	Задержка активации аварийного выключателя насоса	10	0	999	Сек	CO-S	
PA75	Тип сброса аварии насоса 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA76	Задержка активации аварийного отключения котла	10	0	999	Сек	CO-S	
PA77	Тип сброса аварии котла 0: Автоматический 1: Руководство	Ручное (1)	Авто (0)	Ручное (1)		CO-S	
PA78	Задержка активации аварийного отключения ТЭН	10	0	999	Сек	CO-S	
PA79	Тип сброса аварии ТЭН 0: Автоматический 1: Руководство	Руководство (1)	Авто (0)	Руковод ство (1)		CO-S	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
PA84	Включить блокировку системы при аварии вентилятора 0: Нет 1: Только в зимнем режиме 2: Всегда	1	0	2		CO-S	
PA85	Уставка высокой температуры нагнетания	90,0 194,0	70.0 158.0	140.0 284.0	°C °F	CO-S	
PA86	Дифференциал высокой температуры нагнетания	20,0 36,0	10.0 18.0	30.0 54.0	°C °F	CO-S	
PA87	Задержка аварии высокой температуры нагнетания	30	0	999	Сек	CO-S	
PA88	Количество срабатываний аварий по высокой температуре нагнетания до сброса в ручную	3	0	5		CO-S	
PA89	Количество срабатываний аварий высокого давления в час до ручного сброса	3	0	5		CO-S	
PA90	Количество срабатываний аварий низкого давления пуска в час до ручного сброса	3	0	5		CO-S	
PA91	Количество срабатываний аварий выхода за зону до ручного сброса	3	0	5		CO-S	
PA92	Задержка аварии уровня воды при включении устройства	30	1	999	Сек	CO-S	
PA93	Задержка аварии уровня воды	10	1	999	Сек	CO-S	
PA94	Количество срабатываний аварий уровня воды в час до ручного сброса	5	0	10		CO-S	
PA95	Остановка насоса при тревоге высокого давления	Да (1)	Нет (0)	Да (1)		CO-S	
PA96	Уставка аварии низкого давления в режиме отопления	3.6 52.2	PA45	PA97	Бар пси	CO-S	
PA97	Уставка предварительной аварии по низкому давлению в системе отопления	5.6 81.2	PA96	10.0 145.0	Бар Пси	CO-S	
PA99	Задержка аварии расширения	5	0	999	Сек	CO-S	

Код	Описание параметров	По умолчанию	Мин.	Макс	Ед. Изм.	Меню	Примеча ния
	ДРУГИЕ	ПАРАМЕТРЫ	(CO-V)				
PH31	Тип хладагента (преобразование температура-давление): 0: R-22 1: R-134A 2: R-402A 3: R-404A 4: R-407A 5: R-407C 6: R-410A 7: R-417A 8: R-422A 9: R-422D 10: R-507A 11: R-744 12: R-438A 13: R-401B 14: R-290 15: R-717 16: R-1270 17: R-32 18: R-407F 19: R-1234ZE	6 (R-410A)	0	19		CO-V	

23.2 Параметры конфигурации c-pro 3 nano HPRU

	ПАРАМ	ИЕТРЫ EVCM	(CO-V)				
PV01	Уставка SH (1)	6.0	3.0	25.0	К	CO-V	
PV02	Уставка LoSH (1)	2.0	0.0	20.0	К	CO-V	
PV03	Уставка HiSH (1)	15.0	10.0	40.0	К	CO-V	
PV04	Уставка LOP (1)	-40,0	-40,0	40.0	К	CO-V	
PV05	Заданное значение МОР (1)	40.0	-40,0	40.0	К	CO-V	
PV06	ПИД – пропорциональная зона (1)	7.0	1.0	100.0	К	CO-V	
PV07	ПИД – интегральное время (1)	120	0	999	Сек	CO-V	
PV08	ПИД – дифференциальное время (1)	120	0	999	Сек	CO-V	
PV09	Задержка запуска (1)	5	1	255	Сек	CO-V	
PV10	Начальная позиция (1)	50.00	0.00	100.00	%	CO-V	
PV11	Уставка SH (2)	6.0	3.0	25.0	К	CO-V	
		10.8	5.4	45.0	Р		
PV12	Уставка LoSH (2)	2.0	0.0	20.0	К	CO-V	
		3.6	1.8	5.4	P		
PV13	Уставка HiSH (2)	15.0	10.0	40.0	К	CO-V	
		27.0	18.0	72.0	P		
PV14	Уставка LOP (2)	-40,0	-40,0	40.0	К	CO-V	
		-72.0	-72.0	72.0	Р		
PV15	Заданное значение МОР (2)	40.0	-40,0	40.0	К	CO-V	
		72.0	-72.0	72.0	Р		
PV16	ПИД – пропорциональная зона (2)	7.0	1.0	100.0	К	CO-V	
		12.6	1.8	180.0	Р		
PV17	ПИД – интегральное время (2)	120	0	999	Сек	CO-V	
PV18	ПИД – дифференциальное время (2)	120	0	999	Сек	CO-V	
PV19	Задержка запуска (2)	5	1	255	Сек	CO-V	
PV20	Начальная позиция (2)	50.00	0.00	100.00	%	CO-V	
PV21	Время стабилизации	0	0	255	Сек	CO-V	
PV22	Положение стабилизации	100.00	0.00	100.00	%	CO-V	
PV23	Режим работы:	0	0	1		CO-V	
	0= SH-алгоритм						
	1= Ручное						
PV24	Ручное положение	0.00	0.00	100.00	%	CO-V	
PV25	Набор параметров SH:	0	0	1		CO-V	
	0= набор1						
	1= набор2						

PV26	Функция реле:	6	0	8		CO-V	
ΓVZU	0= Отключено	U					
	1= Включено: любая авария						
	2= Включено: авария датчика						
	3= Сигнализация LoSH						
	4= Сигнализация МОР						
	5= Авария клапана						
	6= Соленоидный клапан						
	7= Соленоидный клапан +						
	сигнализация						
	8= Ресинхронизация						
PV27	Тип датчика 3:	0	0	1		CO-V	
	0= NTC						
	1= PT1000						
PV28	Тип датчика 4:	2	0	5		CO-V	
	0= 4-20 мА (0,5 - 8)						
	1= 4-20 MA (0 - 30)						
	2= 0-5 B (0 - 7)						
	3= 0-5 B (0 - 25)						
	4= 0-5 B (0 - 60)						
	5= масштабирование						
PV29	Тип датчика 1 (давление	5	1	9		CO-V	
	конденсатора):						
	1= PTC						
	2= NTC 3= 020mA						
	4= 4-20 MA						
	5= 0-5 B						
	6= 0-10 B						
	7= PT1000						
	8= NTC K2						
	9= NTC K3						
PV30	Тип датчика 2 (Т. нагнетания):	2	1	9		CO-V	
	1= PTC						
	2= NTC						
	3= 020mA						
	4= 4-20 mA						
	5= 0-5 B						
	6= 0-10 B						
	7= PT1000						
	8= NTC K2						
	9= NTC K3						
PV31	Смещение Ts	0.0	-10.0	10.0	К	CO-V	
PV32	Смещение Те	0.0	-10.0	10.0	К	CO-V	
PV33	Включить датчик нагнетания EVDRIVE	Да (1)	Нет (0)	Да (1)		CO-V	
		I.		1			

PV34	Релейная логика	HO (0)	HO (0)	H3 (1)		CO-V	
PV35	Логика DI1	HO (0)	HO (0)	H3 (1)		CO-V	
PV36	Логика DI2	HO (0)	HO (0)	H3 (1)		CO-V	
PV37	Логика DI3	HO (0)	HO (0)	H3 (1)		CO-V	
PV60	Модулирующий сигнал SH (нейтральная зона)	Да (1)	Нет (0)	Да (1)		CO-V	
PV61	Максимум уставки SH	15.0	3.0	25.0	К	CO-V	
PV62	Минимум уставки SH	2.0	1.0	25.0	К	CO-V	
PV63	Максимальное значение DSH	30.0	PV64	50.0	К	CO-V	
PV64	Минимальное значение DSH	20.0	0.0	PV63	К	CO-V	
PV65	Задержка изменения SH вне нейтральной зоны	5	1	60	Мин.	CO-V	
PV66	Отрицательное изменение SH выше зоны	0,2	0.1	2.0	К	CO-V	
PV67	Положительное изменение SH ниже зоны	1.0	0.1	2.0	К	CO-V	
PV68	Включить датчик давления конденсатора EVDRIVE	Да (1)	Нет (0)	Да (1)		CO-V	
PV69	Включить датчик давления испарителя EVDRIVE	Да (1)	Нет (0)	Да (1)		CO-V	
PV70	Минимум нейтральной зоны DSH	4.0	0.0	50.0	К	CO-V	
PV71	Максимум нейтральной зоны DSH	4.0	0.0	50.0	К	CO-V	
	БАЙІ	ΠΑC EVD (CC	-BP)				
Pb01	Уставка 1	15,0 59,0	-30,0 -22,0	40,0 104,0	°C °F	CO-BP	
Pb02	Пропорциональная зона ПИД 1	5.0	1.0	100.0	К	CO-BP	
Pb03	Интегральное время ПИД 1	120	0	999	Сек	CO-BP	
Pb04	Дифференциальное время ПИД 1	0	0	999	Сек	CO-BP	
Pb05	Задержка запуска 1	5	1	255	Сек	CO-BP	
Pb06	Стартовая позиция 1	50.00	0.00	100.00	%	CO-BP	
Pb07	Нейтральная зона	0,2	0.0	25.0	К	CO-BP	
Pb08	Умная зона	0,5	Pb07	25.0	К	CO-BP	
Pb09	Установленные параметры: 0: Набор 1 1: Набор 2	0	0	1		CO-BP	
Pb11	Уставка 2	15,0 59,0	-30,0 -22,0	40,0 104,0	°C °F	CO-BP	

Pb12	Пропорциональная зона ПИД 2	5.0	1.0	100.0	К	CO-BP	
Pb13	Интегральное время ПИД 2	120	0	999	Сек	CO-BP	
Pb14	Дифференциальное время ПИД 2	0	0	999	Сек	CO-BP	
Pb15	Задержка запуска 2	5	1	255	Сек	CO-BP	
Pb16	Стартовая позиция 2	50.00	0.00	100.00	%	CO-BP	
	КОНФИГУРАL	ДИЯ ВВОДА/Е	вывода (CO-O)			
HA01	Аналоговый вход 1 (см. таблицу значений AI)	2	0	81		CO-O	
HA02	Аналоговый вход 2 (см. таблицу значений AI)	5	0	81		CO-0	
HA03	Аналоговый вход 3 (см. таблицу значений AI)	8	0	68		CO-0	
HA04	Аналоговый вход 4 (см. таблицу значений AI)	1	0	68		CO-0	
HA05	Аналоговый вход 5 (см. таблицу значений AI)	6	0	68		CO-O	
HA06	Аналоговый вход 6 (см. таблицу значений AI)	3	0	68		CO-O	
HA07	Аналоговый вход 7 (см. таблицу значений AI)	4	0	68		CO-O	
HA08	Аналоговый вход 8 (см. таблицу значений AI)	10	0	81		CO-0	
HA09	Аналоговый вход 9 (см. таблицу значений AI)	9	0	81		CO-0	
HA10	Аналоговый вход расширения 1 (см. таблицу значений AI)	0	0	81		CO-0	
HA11	Аналоговый вход расширения 2 (см. таблицу значений AI)	0	0	81		CO-0	
HA12	Аналоговый вход расширения 3 (см. таблицу значений AI)	0	0	68		CO-0	
HA13	Аналоговый вход расширения 4 (см. таблицу значений AI)	0	0	68		CO-O	
HA14	Аналоговый вход расширения 5 (см. таблицу значений AI)	0	0	68		CO-O	
HA15	Аналоговый вход расширения 6 (см. таблицу значений AI)	0	0	68		CO-O	
HA16	Аналоговый вход расширения 7 (см. таблицу значений AI)	0	0	68		CO-O	

HB01	Цифровой вход 1 (см. таблицу значений DI)	2	0	54		CO-O	
HB02	Цифровой вход 2 (см. таблицу значений DI)	8	0	54		CO-O	
HB03	Цифровой вход 3 (см. таблицу значений DI)	14	0	54		CO-O	
HB04	Цифровой вход 4 (см. таблицу значений DI)	22	0	54		CO-O	
HB05	Цифровой вход 5 (см. таблицу значений DI)	20	0	54		CO-O	
HB06	Цифровой вход 6 (см. таблицу значений DI)	0	0	54		CO-O	
HB07	Цифровой вход 7 (см. таблицу значений DI)	0	0	54		CO-O	
HB08	Цифровой вход 8 (см. таблицу значений DI)	0	0	54		CO-O	
HC01	Аналоговый выход 1 (см. таблицу значений АО)	1	0	7		CO-O	
HC02	Аналоговый выход 2 (см. таблицу значений АО)	2	0	7		CO-O	
HC03	Аналоговый выход 3 (см. таблицу значений AO)	0	0	9		CO-O	
HC04	Аналоговый выход 4 (см. таблицу значений AO)	0	0	9		CO-O	
HC05	Аналоговый выход 5 (см. таблицу значений АО)	0	0	7		CO-O	
HC06	Аналоговый выход 6 (см. таблицу значений АО)	0	0	7		CO-O	
HCF1	Частота выхода ШИМ вентилятора	10	10	23		CO-O	В случае использ ования выхода ШИМ на расшире нии частота будет делитьс я на 10
HCD1	Задержка выхода FAN (фазорезка)	0	0	50	Сек	CO-O	

HCI1	Импульсы выхода FAN (фазорезка)	20	1	50	CO-O
HD01	Цифровой выход 1 (см. таблицу значений DO)	1	0	28	CO-O
HD02	Цифровой выход 2 (см. таблицу значений DO)	2	0	28	со-о
HD03	Цифровой выход 3 (см. таблицу значений DO)	5	0	28	со-о
HD04	Цифровой выход 4 (см. таблицу значений DO)	6	0	28	CO-O
HD05	Цифровой выход 5 (см. таблицу значений DO)	3	0	28	со-о
HD06	Цифровой выход 6 (см. таблицу значений DO)	12	0	28	CO-O
HD07	Цифровой выход 7 (см. таблицу значений DO)	0	0	28	со-о
HD08	Цифровой выход 8 (см. таблицу значений DO)	0	0	28	со-о
HD09	Цифровой выход 9 (см. таблицу значений DO)	0	0	28	со-о
HD10	Цифровой выход расширения 3 (см. таблицу значений DO)	0	0	28	СО-О
HD11	Цифровой выход расширения 4 (см. таблицу значений DO)	0	0	28	CO-O
HD12	Цифровой выход расширения транзисторного типа (см. таблицу значений DO)	0	0	28	со-о
PSd4	Пароль производителя	-3	-999	9999	СО

24 СПИСОК ПЕРЕМЕННЫХ MODBUS

24.1 Список переменных MODBUS c-pro 3 nano HPRU

Адрес НЕХ	Адрес DEC	Имя	Значение	Мин.	Макс	Режим
0x0000	1	PMxx_EnSimulation	0	0	1	R/W
0x0001	2	PMxx_Simul_AIbatteria1	8.2	-15.0	160.0	R/W
0x0002	3	PMxx_Simul_AIhigh	18.6	-145.0	625,5	R/W
0x0003	4	PMxx_Simul_AIscarico	64.7	-15.0	160.0	R/W
0x0004	5	PMxx_Simul_AISuction	72.1	-145.0	625,5	R/W
0x0005	6	PMxx_Simul_AI_acsHigh	10.7	-15.0	160.0	R/W
0x0006	7	PMxx_Simul_AI_acsLow	10.7	-15.0	160.0	R/W
0x0007	8	PMxx_Simul_AI_LP	6.2	-145.0	625,5	R/W
0x0008	9	PMxx_Simul_batt2	8.2	-15.0	160.0	R/W
0x0009	10	PMxx_Simul_Text	12.3	-15.0	160.0	R/W
0x000A	11	PMxx_Simul_Tin	16.4	-15.0	160.0	R/W
0x000B	12	PMxx_Simul_TinPS	16.4	-15.0	160.0	R/W
0x000C	13	PMxx_Simul_Tout	9.9	-15.0	160.0	R/W
0x000D	14	PMxx_Simul_ToutPS	9.9	-15.0	160.0	R/W
0x000E	15	PMxx_Simul_ToutSource	9.9	-15.0	160.0	R/W
0x000F	16	PMxx_Simul_Aux1	9.9	-15.0	160.0	R/W
0x0010	17	PMxx_Simul_Aux2	9.9	-15.0	160.0	R/W
0x0100	257	Упакованный_DI	0	0	65535	R/W
0x0101	258	Packed_logicDI	0	0	65535	R/W
0x0102	259	Packed_logicDI1	0	0	65535	R/W
0x0103	260	Packed_logicDI2	0	0	65535	R/W
0x0180	385	Упакованный_DO1	0	0	65535	R/W
0x0181	386	Упакованный_DO2	0	0	65535	R/W
0x0182	387	Упакованный_DO3	0	0	65535	R/W
0x0200	513	AI_TempIngresso	0.0	-3276,8	3276.7	R/O
0x0201	514	AI_TempExt	0.0	-3276,8	3276.7	R/O
0x0202	515	AI_TemperaturaBatteria1	0.0	-3276,8	3276.7	R/O
0x0203	516	AI_TempOut	0.0	-3276,8	3276.7	R/O
0x0204	517	AI_HighPressCond	0.0	-3276,8	3276.7	R/O
0x0205	518	AI_TempScarico	0.0	-3276,8	3276.7	R/O

0x0206	519	AI_Tsuction	0.0	-3276,8	3276.7	R/O
0x0207	520	AI_LowPressEvap	0.0	-3276,8	3276.7	R/O
0x0208	521	AI_ACShigh	0.0	-3276,8	3276.7	R/O
0x0209	522	AI_ACSlow	0.0	-3276,8	3276.7	R/O
0x020A	523	AI_TemperaturaBatteria2	0.0	-3276,8	3276.7	R/O
0x020B	524	AI_TempInPS	0.0	-3276,8	3276.7	R/O
0x020C	525	AI_TempOutPS	0.0	-3276,8	3276.7	R/O
0x020D	526	AI_TempOutSource	0.0	-3276,8	3276.7	R/O
0x020E	527	TCond_hpc	0.0	-3276,8	3276.7	R/O
0x020F	528	TEvap_lpe	0.0	-3276,8	3276.7	R/O
0x0210	529	AI_AUX1	0.0	-3276,8	3276.7	R/O
0x0211	530	AI_AUX2	0.0	-3276,8	3276.7	R/O
0x0280	641	out_AOfan	0.00	0.00	100.00	R/W
0x0281	642	out_AOcmp	0.00	0.00	100.00	R/W
0x0282	643	out_AO_Tank_Resistor	0.00	0.00	100.00	R/W
0x0283	644	out_AO_Aux1	0.00	0.00	100.00	R/W
0x0284	645	out_AO_Aux2	0.00	0.00	100.00	R/W
0x0300	769	PackedAlarm1	0	0	65535	R/W
0x0301	770	PackedAlarm2	0	0	65535	R/W
0x0302	771	PackedAlarm3	0	0	65535	R/W
0x0303	772	БМС_АЛ1	0	0	1	R/W
0x0304	773	БМС_АЛ2	0	0	1	R/W
0x0305	774	БМС_АЛ03	0	0	1	R/W
0x0306	775	БМС_АЛ4	0	0	1	R/W
0x0307	776	БМС_АЛ5	0	0	1	R/W
0x0308	777	БМС_АЛ6	0	0	1	R/W
0x0309	778	БМС_АЛ7	0	0	1	R/W
0x030A	779	БМС_АЛ9	0	0	1	R/W
0x030B	780	БМС_AC21[0]	0	0	1	R/W
0x030C	781	БМС_AC21[1]	0	0	1	R/W
0x030D	782	БМС_AC21[2]	0	0	1	R/W
0x030E	783	БМС_AC24	0	0	1	R/W
0x030F	784	БМС_AC25	0	0	1	R/W
0x0310	785	БМС_AC26	0	0	1	R/W

0x0311	786	БМС_AC27	0	0	1	R/W
0x0312	787	БМС_AC28	0	0	1	R/W
0x0313	788	БМС_AC29	0	0	1	R/W
0x0314	789	БМС_AC30	0	0	1	R/W
0x0315	790	БМС_АЛ10	0	0	1	R/W
0x0316	791	БМС_АЛ11	0	0	1	R/W
0x0317	792	БМС_АЛ12	0	0	1	R/W
0x0318	793	БМС_АЛ14	0	0	1	R/W
0x0319	794	БМС_АЛ17	0	0	1	R/W
0x031A	795	БМС_АЛ19	0	0	1	R/W
0x031B	796	PackedAlarm4	0	0	65535	R/W
0x0400	1025	OnOffBySuperv	1	0	1	R/W
0x0401	1026	ModoFunzBySuperv	0	0	1	R/W
0x04FE	1279	CLOCK_RTC (низкий)	-	01/01/2000	19/01/2068 03:14:07	R/W
0x04FF	1280	CLOCK_RTC (высокий)				
0x0500	1281	StatoOnOffMacchina	0	0	6	R/W
0x0501	1282	ModoUnita	0	0	5	R/W
0x0502	1283	ModoFunz	0	0	1	R/W
0x0503	1284	SetpointEstivo_Attuale	8.5	-3276,8	3276.7	R/W
0x0504	1285	SetpointInverno_Attuale	44.0	-3276,8	3276.7	R/W
0x0505	1286	StatoSbrinamento_C1	0	0	13	R/W
0x0506	1287	СтатоФан1	0	0	6	R/W
0x0507	1288	StatoPompa	0	0	6	R/W
0x0508	1289	setD	0.0	-3276,8	3276.7	R/W
0x0509	1290	Cnt_WaitSbrinamento_C1	0	0	65535	R/W
0x050A	1291	Cnt_OnSbrinamento_C1	0	0	65535	R/W
0x050B	1292	StatoPompa_Source	0	0	3	R/W
0x050C	1293	SM_antilegionella	0	0	255	R/W
0x050D	1294	GeneralAlarm	0	0	1	R/W
0x050E	1295	СтатоКомпрессоры[0]	0	0	6	R/W
0x050F	1296	Статокомпрессоры[1]	0	0	6	R/W
0x0510	1297	Статокомпрессоры[2]	0	0	6	R/W
0x0511	1298	StatoPompa_PS	0	0	3	R/W
0x0600	1537	MOdE_ModoFunzionamento	0	0	1	R/W

0x0601	1538	SPC1_SetpointRiscaldamentoEstate	8.5	0.0	104.0	R/W
0x0602	1539	SPH1_SetpointRiscaldamentoInverno	40.0	20.0	176.0	R/W
0x0603	1540	SPB1_SetpointSerbatoioACS	50.0	20.0	203.0	R/W
0x0604	1541	SSB1_DifferenzialeSerbatoioACS	1.0	0.0	18.0	R/W
0x0605	1542	PM00_Limit_HourCmp (низкий)	2000.0	0.0	9999.0	R/W
0x0606	1543	PM00_Limit_HourCmp (Высокий)				
0x0607	1544	PM01a03_OreCompressore[0] (Низкий)	0.0	0.0	9999.0	R/W
0x0608	1545	PM01a03_OreCompressore[0] (Высокий)				
0x0609	1546	PM01a03_OreCompressore[1] (Низкий)	0.0	0.0	9999.0	R/W
0x060A	1547	PM01a03_OreCompressore[1] (Высокий)				
0x060B	1548	PM01a03_OreCompressore[2] (Низкий)	0.0	0.0	9999.0	R/W
0x060C	1549	PM01a03_OreCompressore[2] (Высокий)				
0x060D	1550	PM32_OrePompaS (низкий)	0.0	0.0	9999.0	R/W
0x060E	1551	PM32_OrePompaS (Высокий)				
0x060F	1552	PM30_Limit_HourPump (низкий)	2000.0	0.0	9999.0	R/W
0x0610	1553	PM30_Limit_HourPump (высокий)				
0x0611	1554	PM31_OrePompa1_VentilatoreRicircolo (Low)	0.0	0.0	9999.0	R/W
0x0612	1555	PM31_OrePompa1_VentilatoreRicircolo (High)				
0x0613	1556	PM40_Limit_HourFan (низкий)	2000.0	0.0	9999.0	R/W
0x0614	1557	PM40_Limit_HourFan (Высокий)				
0x0615	1558	PM41_OreVentilatore1_Or_Inverter (Низкий)	0.0	0.0	9999.0	R/W
0x0616	1559	PM41_OreVentilatore1_Or_Inverter (Высокий)				
0x0617	1560	PM51_ManualeVentilatore1	0	0	1	R/W
0x0618	1561	PM52_ManualePompa	0	0	1	R/W
0x0619	1562	PM61_ForzaturaInvFan_C1	0.00	0.00	100.00	R/W
0x061A	1563	PM62_ForcePump	0	0	1	R/W
0x061B	1564	PM81_TaraturaTritorno	0.0	-36.0	36.0	R/W
0x061C	1565	PM82_TaraturaTesterna	0.0	-36.0	36.0	R/W

0x061D	1566	PM83_TaraturaSondaBassaPressione	0.0	-290,0	290.0	R/W
0x061E	1567	PM84_TaraturaMandata	0.0	-36.0	36.0	R/W
0x061F	1568	PM85_TaraturaSondaAltaPressione	0.0	-290,0	290.0	R/W
0x0620	1569	PM86_TaraturaTscarico	0.0	-36.0	36.0	R/W
0x0621	1570	PM99_LastMaintainDATE (Низкая)	01/01/2013	01/01/2013	19/01/2068 03:14:07	R/W
0x0622	1571	PM99_LastMaintainDATE (высокая)				
0x0623	1572	PM33_OrePompaPS (низкий)	0.0	0.0	9999.0	R/W
0x0624	1573	PM33_OrePompaPS (Высокий)				
0x0625	1574	PC00_SondaRegolazione	1	0	1	R/W
0x0626	1575	PC03_Cmp_TonOther	10	0	999	R/W
0x0627	1576	PC04_Cmp_TminOn	20	0	999	R/W
0x0628	1577	PC05_Cmp_TminOff	120	0	999	R/W
0x0629	1578	PC06_Cmp_TonOn	360	0	999	R/W
0x062A	1579	PC07_AbilitaByPassSicurezzeCompresso re	1	0	1	R/W
0x062B	1580	PC08_ToffCmpAfterInvValve	30	0	999	R/W
0x062C	1581	PC09_MinTimeOFFc	5	0	999	R/W
0x062D	1582	PC10_CompressorenErroreSonda	0	0	1	R/W
0x062E	1583	PC11_Cmp_ToffOther	20	0	999	R/W
0x062F	1584	PC12_BandaRegolazioneGradini	5.0	0.1	36.0	R/W
0x0630	1585	РС14_Мертвая зона	5.0	0.1	68.0	R/W
0x0631	1586	PC15_DeadZone_Min	1.0	0.1	36.0	R/W
0x0632	1587	PC16_DeadZone_Max	10.0	0.1	36.0	R/W
0x0633	1588	PC17_DeadZoneOutsideTime	20	0	999	R/W
0x0634	1589	PC18_DeadZoneType	0	0	1	R/W
0x0635	1590	PC21_LimiteMinimoSetChiller	5.0	0.0	104.0	R/W
0x0636	1591	PC22_LimiteMassimoSetChiller	10.0	0.0	104.0	R/W
0x0637	1592	PC23_LimiteMinimoSetPompaCalore	30.0	20.0	176.0	R/W
0x0638	1593	PC24_LimiteMassimoSetPompaCalore	45.0	20.0	176.0	R/W
0x0639	1594	PC28_TminHC	10	1	999	R/W
0x063A	1595	PC29_TminACS	30	1	999	R/W
0x063B	1596	PC30_PropBandMod	10.0	0.0	36.0	R/W
0x063C	1597	PC31_IntegralTime	0	0	999	R/W
0x063D	1598	PC32_PmodMin_HIDDEN	16.70	0.00	100.00	R/W

0x063E	1599	PC33_PmodMax_HIDDEN	100.00	0.00	100.00	R/W
0x063F	1600	PC34_Pmod	100.00	0.00	100.00	R/W
0x0640	1601	PC35_Ponoff1	0.00	0.00	100.00	R/W
0x0641	1602	PC36_Ponoff2	0.00	0.00	100.00	R/W
0x0642	1603	PC37_minPerc_HIDDEN	0.00	0.00	100.00	R/W
0x0643	1604	PC38_maxPerc_HIDDEN	100.00	0.00	100.00	R/W
0x0644	1605	PC39_minRPS_HIDDEN	0	0	200	R/W
0x0645	1606	PC40_maxRPS_HIDDEN	120	0	200	R/W
0x0646	1607	PC41_InitSpeed_HIDDEN	63	20	120	R/W
0x0647	1608	PC42_SyncroTime_HIDDEN	180	0	999	R/W
0x0648	1609	PC43_TdischOK_HIDDEN	105.0	50.0	266.0	R/W
0x0649	1610	PC44_TdischProtect_HIDDEN	115.0	50.0	266.0	R/W
0x064A	1611	PC45_TdischLimit_HIDDEN	120.0	50.0	266.0	R/W
0x064B	1612	PC46_MaxLimitSpeed_HIDDEN	20	0	200	R/W
0x064C	1613	PC50_enabByPass	2	0	3	R/W
0x064D	1614	PC51_SetPressByPassCHIL	5.0	0.1	217.5	R/W
0x064E	1615	PC52_SetPressByPassHP	5.0	0.1	217.5	R/W
0x064F	1616	PC53_DiffSetPessByPass	2.0	0.1	72,5	R/W
0x0650	1617	PC54_MaxTimeByPass	30	1	999	R/W
0x0651	1618	PC55_MaxTimeDisactByPass	30	1	999	R/W
0x0652	1619	PC56_NumeroMaxByPass	5	1	10	R/W
0x0653	1620	PC47_minRPSvar_HIDDEN	2	0	200	R/W
0x0654	1621	PC48_minRPSalarmVar_HIDDEN	7	0	200	R/W
0x0655	1622	PC49_enabRPScontrol	1	0	1	R/W
0x0658	1625	PC62_SetCommutazioneEstate	20.0	0.0	104.0	R/W
0x0659	1626	PC63_SetCommutazioneInverno	10.0	0.0	104.0	R/W
0x065A	1627	PC64_offsetSetPointDinamico_Estate	-5.0	-18.0	18.0	R/W
0x065B	1628	PC65_tempInizo_SPDinamico_Estate	25.0	10.0	122.0	R/W
0x065C	1629	PC66_tempFine_SPDinamico_Estate	35.0	10.0	122.0	R/W
0x065D	1630	PC67_offsetSetPointDinamico_Inverno	-10.0	-36.0	36.0	R/W
0x065E	1631	PC68_tempInizo_SPDinamico_Inverno	5.0	-10.0	77.0	R/W
0x065F	1632	PC69_tempFine_SPDinamico_Inverno	15.0	-10.0	77.0	R/W
0x0660	1633	Pd01_Start_DefrostProbe	1	1	3	R/W
0x0661	1634	Pd02_SetInizioSbrinamento	-5.0	-40,0	68.0	R/W
				I		

0x0662	1635	Pd03_End_DefrostProbe	1	1	4	R/W
0x0663	1636	Pd04_SetFineSbrinamentoTemp	15.0	0.0	86.0	R/W
0x0664	1637	Pd05_RitardoAttivazioneSbrinamento	1200	60	9600	R/W
0x0665	1638	Pd06_TempoMaxDurataSbrinamento	300	60	1200	R/W
0x0666	1639	Pd07_TempoFermataCompressoreInDefrost	30	0	600	R/W
0x0667	1640	Pd08_TempoSgocciolamento	30	0	600	R/W
0x0669	1642	Pd10_DefrostType	4	0	4	R/W
0x066A	1643	Pd11_DeltaTempExtEvap	5.0	0.0	90.0	R/W
0x066B	1644	Pd12_DeltaTPerDefrostDinamico	10.0	0.0	90.0	R/W
0x066C	1645	Pd13_TempoAutoApprendimento	5	0	99	R/W
0x066D	1646	Pd14_SetInizioSbrinamentoForzato	-25.0	-40,0	68.0	R/W
0x066E	1647	Pd15_differenzialeSbrinamentoForzato	5.0	0.0	54.0	R/W
0x066F	1648	Pd16_TempoAttesaSbrinamentoForzato	60	0	999	R/W
0x0670	1649	Pd17_differenzialeResetSbrinamento	10.0	0.0	54.0	R/W
0x0671	1650	Pd18_DelayEndDefrost	60	0	600	R/W
0x0672	1651	Pd19_MinLimDefrost	-40,0	-40,0	68.0	R/W
0x0673	1652	Pd21_SetInizio_CompensazioneSbr	5.0	-30.0	68.0	R/W
0x0674	1653	Pd22_SetFine_CompensazioneSbr	-5.0	-30.0	68.0	R/W
0x0675	1654	Pd23_RitardoMassimoFineSbr	3600	0	9600	R/W
0x0676	1655	PF02_CondDipDaiCompr	0	0	1	R/W
0x0677	1656	PF03_StopFan_Defrost	0	0	1	R/W
0x0678	1657	PF04_SetTesternaFanInDefrost	5.0	0.0	68.0	R/W
0x0679	1658	PF10_ForzaturaInErroreSonda	0.00	0.00	100.00	R/W
0x067A	1659	PF11_SetRegolazioneCond_Chiller	20.0	5.0	625,5	R/W
0x067B	1660	PF12_DiffRegolazioneCond_Chiller	12.0	0.1	725.0	R/W
0x067C	1661	PF13_AbiForzaturaMaxCond_Chiller	1	0	1	R/W
0x067D	1662	PF14_SetForzaturaMaxCond_Chiller	34.0	15.0	652.5	R/W
0x067E	1663	PF15_DiffForzaturaMaxCond_Chiller	2.0	0.1	72,5	R/W
0x067F	1664	PF21_SetRegolazioneCond_PdC	9.0	0,5	217.5	R/W
0x0680	1665	PF22_DiffRegolazioneCond_PdC	2.0	0.1	217.5	R/W
0x0681	1666	PF23_AbiForzaturaMaxCond_PdC	1	0	1	R/W
0x0682	1667	PF24_SetForzaturaMaxCond_PdC	3.2	0,5	290.0	R/W
0x0683	1668	PF25_DiffForzaturaMaxCond_PdC	0,5	0.1	72,5	R/W
0x0684	1669	PF26_MinVal_InverterFan	0.00	0.00	100.00	R/W

0x0685	1670	PF27_SpeedUp_InverterFan	4	0	999	R/W
0x0686	1671	PF31_LimiteMinCondensazioneLineare_P dC	30.00	0.00	100.00	R/W
0x0687	1672	PF32_LimiteMaxCondensazioneLineare_ PdC	80.00	0.00	100.00	R/W
0x0688	1673	PF33_AbiRegolazioneSottoLimiteMinCon d_PdC	1	0	1	R/W
0x0689	1674	PF34_DiffSpegnimentoSottoLimiteMinCo nd_PdC	2.0	0.0	72,5	R/W
0x068A	1675	PF36_AbilitaPreavvioVentilatoreCond	0	0	1	R/W
0x068B	1676	PF37_SetPreavvioVentilatoreCond	30.0	20.0	104.0	R/W
0x068C	1677	PF38_VelocitaPreavvio	50.00	0.00	100.00	R/W
0x068D	1678	PF39_TempoAnticipoVentilatoreCond	5	0	999	R/W
0x068E	1679	PF51_SetRegolazioneCond_Def	20.0	5.0	652.5	R/W
0x068F	1680	PF52_DiffRegolazioneCond_Def	4.0	0.1	725.0	R/W
0x0690	1681	PF53_AbiForzaturaMaxCond_Def	1	0	1	R/W
0x0691	1682	PF54_SetForzaturaMaxCond_Def	26.0	15.0	652.5	R/W
0x0692	1683	PF55_DiffForzaturaMaxCond_Def	2.0	0.1	72,5	R/W
0x0693	1684	PF56_AbiRegolazioneSottoLimiteMinCondDef	1	0	1	R/W
0x0694	1685	PF57_DiffSpegnimentoSottoLimiteMinCo ndDef	2.0	0.0	72,5	R/W
0x0695	1686	PF58_LimiteMaxCondensazioneLineareD ef	100.00	0.00	100.00	R/W
0x0696	1687	PF59_LimiteMinCondensazioneLineareDe f	30.00	0.00	100.00	R/W
0x0697	1688	PF60_CondensorType	0	0	1	R/W
0x069D	1694	PP04_TMinPompe_Ventilatore	60	0	999	R/W
0x069E	1695	PP05_RitardoSpegnimentoPompe_Ventil atore	60	0	999	R/W
0x069F	1696	PP06_TempoAttesaPompaCommutazion eValvolaTreVie	60	0	255	R/W
0x06A0	1697	PP07_SpegnimentoPompaInDfrst	0	0	1	R/W
0x06A1	1698	PP09_TempoFunzPompeConBassoQuanti tativoAcqua	30	0	999	R/W
0x06A2	1699	PP10_TempoFunzPompeConBassaTemp eratura	15	0	999	R/W

0x06A3	1700	PP11_PumpMode	2	0	2	R/W
0x06A4	1701	PP12_WaitTime_RefreshCycle	5	1	99	R/W
0x06A5	1702	PP13_ActiveTime_RefreshCycle	2	1	99	R/W
0x06A6	1703	PL01_enabAntilegionella	0	0	1	R/W
0x06A7	1704	PL02_IntervalloAntilegionella	7	1	60	R/W
0x06A8	1705	PL03_AbilitaCicloAntilegionellaAvvio	0	0	1	R/W
0x06A9	1706	PL04_MaxTimeAntilegionella	120	1	999	R/W
0x06AA	1707	PL05_SetpointAntilegionella	70.0	20.0	176.0	R/W
0x06AB	1708	PL08_MaxTimeMantenimento	5	1	999	R/W
0x06AF	1712	Pr04_AbilitaRAantigeloRaff	1	0	1	R/W
0x06B0	1713	Pr05_AbilitaRAsbrinamento	0	0	1	R/W
0x06B1	1714	Pr06_sogliaRAsbrinamento	15.0	0.0	158.0	R/W
0x06B2	1715	Pr07_ZonaNeutraAttivazioneRAsbriname nto	5.0	0.1	18.0	R/W
0x06B3	1716	Pr08_PrioritaRA	0	0	4	R/W
0x06B4	1717	Pr09_DelayStep1RA	60	0	600	R/W
0x06B5	1718	Pr10_DelayStep2RA	60	0	600	R/W
0x06B6	1719	Pr11_DelayStep3RA	60	0	600	R/W
0x06B7	1720	Pr12_sogliaRAperLT	30.0	0.0	158.0	R/W
0x06B8	1721	Pr13_ZonaNeutraAttivazioneRAperLT	5.0	0.1	18.0	R/W
0x06B9	1722	Pr14_DelayRAperLT	60	1	600	R/W
0x06BA	1723	Pr15_PrioritaRAlimiteFunzionamento	2	0	3	R/W
0x06BB	1724	Pr16_sogliaRAlimiteFunzIntegraz	0.0	-30.0	50.0	R/W
0x06BC	1725	Pr17_diffRAlimiteFunzIntegraz	10.0	0.0	36.0	R/W
0x06BD	1726	Pr18_sogliaRAlimiteFunzSostituz	-10.0	-30.0	50.0	R/W
0x06BE	1727	Pr19_diffRAlimiteFunzSostituz	10.0	0.0	36.0	R/W
0x06BF	1728	Pr20_RiabilitazioneCmpInTermico	1	0	1	R/W
0x06C0	1729	Pr22_sogliaResACSinDefrost	30.0	10.0	158.0	R/W
0x06C1	1730	Pr23_diffResACSinDefrost	10.0	0.0	36.0	R/W
0x06C2	1731	Pr24_DelayResistenzaACS	30	0	999	R/W
0x06C3	1732	PV01_SHsetpoint1	6.0	3.0	25.0	R/W
0x06C4	1733	PV02_LoSHsetpoint1	2.0	1.0	3.0	R/W
0x06C5	1734	PV03_HiSHsetpoint1	15.0	10.0	40.0	R/W
0x06C6	1735	PV04_LOPtemp1	-40,0	-40,0	40.0	R/W
0x06C7	1736	PV05_MOPtemp1	40.0	-40,0	40.0	R/W

0x06C8	1737	PV06_PIDpropBand1	7.0	1.0	100.0	R/W
0x06C9	1738	PV07_PIDintegralTime1	120	0	999	R/W
0x06CA	1739	PV08_PIDderivTime1	120	0	999	R/W
0x06CB	1740	PV09_StartUpDelay1	5	1	255	R/W
0x06CC	1741	PV10_StartUpPosition1	50.00	0.00	100.00	R/W
0x06CD	1742	PV11_SHsetpoint2	6.0	3.0	25.0	R/W
0x06CE	1743	PV12_LoSHsetpoint2	2.0	1.0	3.0	R/W
0x06CF	1744	PV13_HiSHsetpoint2	15.0	10.0	40.0	R/W
0x06D0	1745	PV14_LOPtemp2	-40,0	-40,0	40.0	R/W
0x06D1	1746	PV15_MOPtemp2	40.0	-40,0	40.0	R/W
0x06D2	1747	PV16_PIDpropBand2	7.0	1.0	100.0	R/W
0x06D3	1748	PV17_PIDintegralTime2	120	0	999	R/W
0x06D4	1749	PV18_PIDderivTime2	120	0	999	R/W
0x06D5	1750	PV19_StartUpDelay2	5	1	255	R/W
0x06D6	1751	PV20_StartUpPosition2	50.00	0.00	100.00	R/W
0x06D7	1752	PV21_StabilizationDelay	0	0	255	R/W
0x06D8	1753	PV22_SabilizationPosition	100.00	0.00	100.00	R/W
0x06D9	1754	PV23_Режим функционирования	0	0	1	R/W
0x06DA	1755	PV24_ManualValvePositionSetPoint	0.00	0.00	100.00	R/W
0x06DB	1756	PV25_SHcontrolParametersSet	0	0	1	R/W
0x06DC	1757	PV26_RelayFuncSel	6	0	255	R/W
0x06DD	1758	PV27_AIV3probeType	0	0	1	R/W
0x06DE	1759	PV28_AIV4probeType	2	0	5	R/W
0x06DF	1760	PV31_TsTemperatureOffset	0.0	-10.0	10.0	R/W
0x06E0	1761	PV32_TeTemperatureOffset	0.0	-10.0	10.0	R/W
0x06E1	1762	PV34_RelayLogic	0	0	1	R/W
0x06E2	1763	PV35_DI1Logic	0	0	1	R/W
0x06E3	1764	PV36_DI2Logic	0	0	1	R/W
0x06E4	1765	PV37_DIHVLogic	0	0	1	R/W
0x06E5	1766	PV60_enabSHmod	1	0	1	R/W
0x06E6	1767	PV61_maxSetSH	15.0	3.0	25.0	R/W
0x06E7	1768	PV62_minSetSH	2.0	1.0	25.0	R/W
0x06E8	1769	PV63_maxDSH	30.0	0.0	50.0	R/W

ı				1		
0x06E9	1770	PV64_minDSH	20.0	0.0	50.0	R/W
0x06EA	1771	PA01_SetpointAntigelo	5.0	-30.0	50.0	R/W
0x06EB	1772	PA02_DifferenzialeAntigelo	2.0	0.1	18.0	R/W
0x06EC	1773	PA03_SetpointAllarmeAntigelo	3.0	-30.0	50.0	R/W
0x06ED	1774	PA04_DifferenzialeAlarmeAntigelo	2.0	0.1	18.0	R/W
0x06EE	1775	PA05_DelayAllarmeAntigelo	30	0	999	R/W
0x06EF	1776	PA06_SetAntigeloInDefrost	3.0	0.0	217.5	R/W
0x06F0	1777	PA07_DiffAntigeloInDefrost	1.0	0.1	58.0	R/W
0x06F1	1778	PA08_SetALAntigeloInDefrost	1.0	0.0	217.5	R/W
0x06F2	1779	PA09_DiffALAntigeloInDefrost	1.0	0.1	58.0	R/W
0x06F3	1780	PA10_FlowStartup_AlarmDelay	30	1	999	R/W
0x06F4	1781	PA11_FlowRunning_AlarmDelay	10	1	999	R/W
0x06F5	1782	PA12_NumeroInterventiAllarmeFlusso	5	0	10	R/W
0x06F6	1783	PA19_RitardoErroreSonda	10	0	240	R/W
0x06F7	1784	PA20_SignalazioneAlarmeTemperatura	0	0	3	R/W
0x06F8	1785	PA21_RitardoManualeAllarmiТемперату ра	5	0	99	R/W
0x06F9	1786	PA22_DifferenzialeAllarmeTemp	2.0	0.1	18.0	R/W
0x06FA	1787	PA23_RitardoAttivazioneAlarmeTempera tura	30	1	999	R/W
0x06FB	1788	PA24_TempoInibizioneAllarmiTemperatu raInAccensione	15	0	999	R/W
0x06FC	1789	PA25_SetAllHTriscaldamento	50.0	20.0	176.0	R/W
0x06FD	1790	PA26_SetAllLTriscaldamento	10.0	8.0	176.0	R/W
0x06FE	1791	PA27_SetAllHTraffrescamento	30.0	0.1	95.0	R/W
0x06FF	1792	PA28_SetAllLTraffrescamento	6.0	-30.0	104.0	R/W
0x0700	1793	PA29_SetpointAllarmeAltaTempACS	60.0	20.0	158.0	R/W
0x0701	1794	PA30_SetpointAllarmeBassaTempACS	25.0	20.0	203.0	R/W
0x0702	1795	PA31_SetpointAllarmeAltaTempAntilegio nella	70.0	20.0	203.0	R/W
0x0703	1796	PA38_EnableAlarmRTC	1	0	1	R/W
0x0704	1797	PA39_ResetType_AlarmRTC	1	0	1	R/W
0×0705	1798	PA40_SetAllarmeBassaPressioneRaffresc amento	3.0	0.1	145.0	R/W
0x0706	1799	PA41_DiffAllarmeBassaPressioneRaffresc amento	1.0	0.1	58.0	R/W

0x0707	1800	PA42_TempoByPassAllarmeBassaPressione	120	0	999	R/W
0x0708	1801	PA43_NumeroInterventiAllarmeBP	3	0	5	R/W
0x0709	1802	PA44_AbilitaControlloBassaPressConBas saTemp	2	0	3	R/W
0x070A	1803	PA45_SetAllarmeBassaPressioneAvviam entoCompressore	1.0	0.1	145.0	R/W
0x070B	1804	PA46_DiffAllarmeBassaPressioneInBassa Temp	0,5	0.1	58.0	R/W
0x070C	1805	PA47_TempoAttivazControlloBPconBT	5	0	999	R/W
0x070D	1806	PA48_SetAllarmeAltaPressione	42.0	16.0	652.2	R/W
0x070E	1807	PA49_DiffAllarmeAltaPressione	7.0	0.1	145.0	R/W
0x071B	1820	PA78_ThermalRes_Delay	10	0	999	R/W
0x071C	1821	PA79_ThermalRes_ResetType	1	0	1	R/W
0x071D	1822	PA66_ThermalPumpPS_Delay	10	0	999	R/W
0x071E	1823	PA67_ThermalPumpsPS_ResetType	1	0	1	R/W
0x071F	1824	PA68_ThermalPumpS_Delay	10	0	999	R/W
0x0720	1825	PA69_ThermalPumps_ResetType	1	0	1	R/W
0x0721	1826	PA70_ThermalCmp_Delay	10	0	999	R/W
0x0722	1827	PA71_ThermalCmp_ResetType	1	0	1	R/W
0x0723	1828	PA72_ThermalFan_Delay	10	0	999	R/W
0x0724	1829	PA73_ThermalFan_ResetType	1	0	1	R/W
0x0725	1830	PA74_ThermalPump_Delay	10	0	999	R/W
0x0726	1831	PA75_ThermalPump_ResetType	1	0	1	R/W
0x0727	1832	PA76_ThermalBoiler_Delay	10	0	999	R/W
0x0728	1833	PA77_ThermalBoiler_ResetType	1	0	1	R/W
0x0729	1834	PA83_EnabDefrostAlarm	0	0	1	R/W
0x072A	1835	PA80_En_Alarm_HourCmp	1	0	1	R/W
0x072B	1836	PA81_En_Alarm_HourPump	1	0	1	R/W
0x072C	1837	PA82_En_Alarm_HourFan	1	0	1	R/W
0x072D	1838	PA85_SetpointAllarmeAltaTempGas	90.0	70.0	284.0	R/W
0x072E	1839	PA86_DiffAllarmeTempGas	20.0	10.0	54.0	R/W
0x072F	1840	PA87_RitardoAllarmeTemperaturaGas	30	0	999	R/W
0x0730	1841	PA88_AutoManualALgasScarico	1	0	1	R/W
0x0731	1842	PA99_RitardoAllarmeEspansione	5	0	999	R/W

0x0732	1843	PH03_HighPressureMin	0.0	-14,5	870.0	R/W
0x0733	1844	PH04_HighPressureMax	50.0	-14,5	870.0	R/W
0x0734	1845	PH05_AbilitaCommutazioneValvola3vieAntigelo	1	0	1	R/W
0x0735	1846	PH06_OnOffType	0	0	4	R/W
0x0736	1847	PH07_ModeChenageOver	0	0	3	R/W
0x0737	1848	PH09_Param_Language	1	0	1	R/W
0x0738	1849	PH10_CAN_1st_BaudRate	3	1	4	R/W
0x0739	1850	PH11_Modbus_Address	1	1	247	R/W
0x073A	1851	PH12_Modbus_Baud	3	0	4	R/W
0x073B	1852	PH13_Modbus_Четность	2	0	2	R/W
0x073C	1853	PH14_Modbus_StopBit	0	0	1	R/W
0x073D	1854	PH15_RipristinoDefaultParametri	0	0	1	R/W
0x073E	1855	PH18_HistoryReset	0	0	1	R/W
0x0747	1864	PH29_AbilitaSetPointDinamico	0	0	1	R/W
0x0748	1865	РН31_Тип охлаждения	6	0	19	R/W
0x0749	1866	PH32_Temp_UM	0	0	1	R/W
0x074A	1867	PH33_Press_UM	0	0	1	R/W
0x075B	1884	PSd1_Password_Utente	0	-999	9999	R/W
0x075C	1885	PSd2_Password_Manutentore	-1	-999	9999	R/W
0x075D	1886	PSd3_Password_Installatore	-2	-999	9999	R/W
0x075E	1887	PSd4_Password_Costruttore	-3	-999	9999	R/W
0x075F	1888	Pr25_delaySetNotReached	20	0	999	R/W
0x0760	1889	PF16_LimiteMinCondensazioneLineare_C hiller	30.00	0.00	100.00	R/W
0x0761	1890	PF17_LimiteMaxCondensazioneLineare_ Чиллер	80.00	0.00	100.00	R/W
0x0762	1891	PF18_AbiRegolazioneSottoLimiteMinCond_Chiller	1	0	1	R/W
0x0763	1892	PF19_DiffSpegnimentoSottoLimiteMinCo nd_Chiller	2.0	0.0	72,5	R/W
0x0764	1893	PrXX40_EnabFreeCoolingGeo	0	0	1	R/W
0x0765	1894	PrXX41_DeltaONtempGeo	3.0	1.0	18.0	R/W
0x0766	1895	PrXX42_DeltaOFFtempGeo	1.0	1.0	18.0	R/W
0x076B	1900	PC02_Cmp_Rotation_Type	3	0	3	R/W
0x076C	1901	PC19_HoursWearFactor	1	0	255	R/W

0x076D	1902	PC20_StartWearFactor	1	0	255	R/W
0x076E	1903	PC70_delayCmpEnv_HIDDEN	180	0	999	R/W
0x076F	1904	PC71_TimeForceCmpEnv_HIDDEN	30	0	999	R/W
0x0770	1905	PG00_MachineType	0	0	1	R/W
0x0771	1906	PG01_EnEVDRIVE	1	0	1	R/W
0x0772	1907	PG02_CmpType	3	0	5	R/W
0x0773	1908	РН01_НизкоеДавлениеМин	0.0	-14,5	870.0	R/W
0x0774	1909	РН02_НизкоеДавлениеМакс	20.0	-14,5	870.0	R/W
0x0775	1910	PM11a13_AbilitaManuale_Comp[0]	0	0	1	R/W
0x0776	1911	PM11a13_AbilitaManuale_Comp[1]	0	0	1	R/W
0x0777	1912	PM11a13_AbilitaManuale_Comp[2]	0	0	1	R/W
0x0778	1913	PM21a23_outCmp[0]	0	0	1	R/W
0x0779	1914	PM21a23_outCmp[1]	0	0	1	R/W
0x077A	1915	PM21a23_outCmp[2]	0	0	1	R/W
0x077B	1916	PM53_ManualePompaPS	0	0	1	R/W
0x077C	1917	PM54_ManualePompaS	0	0	1	R/W
0x077D	1918	PM63_ForcePumpPS	0	0	1	R/W
0x077E	1919	PM64_ForcePumpS	0	0	1	R/W
0x077F	1920	PM87_TaraturaT_ACS_High	0.0	-36.0	36.0	R/W
0x0780	1921	PM88_TaraturaT_ACS_Low	0.0	-36.0	36.0	R/W
0x0781	1922	PM89_TaraturaTemperaturaBatteria1	0.0	-36.0	36.0	R/W
0x0782	1923	PM90_TaraturaTemperaturaBat2	0.0	-36.0	36.0	R/W
0x0783	1924	PM91_TaraturaOutSource	0.0	-36.0	36.0	R/W
0x0784	1925	PM92_TinPS	0.0	-36.0	36.0	R/W
0x0785	1926	PM93_TaraturaOutPS	0.0	-36.0	36.0	R/W
0x0786	1927	PP21_TipoFunzionamentoPompaS	0	0	2	R/W
0x0787	1928	PP31_sondaRegolazione	0	0	1	R/W
0x0788	1929	PP32_deltaON	5.0	0.0	36.0	R/W
0x0789	1930	PP33_deltaOFF	3.0	0.0	36.0	R/W
0x078A	1931	PP34_TOnFunzCiclicoPompaPS	2	0	999	R/W
0x078B	1932	PP35_TOffFunzCiclicoPompa_PS	5	0	999	R/W
0x078C	1933	PV29_Select_UniversalAIV1	5	1	9	R/W
0x078D	1934	PV30_Select_UniversalAIV2	2	1	9	R/W

0x078E	1935	PM04_startupCmp[0] (низкий)	0.00	0.00	9999.00	R/W
0x078F	1936	PM04_startupCmp[0] (Высокий)				
0x0790	1937	PM04_startupCmp[1] (низкий)	0.00	0.00	9999.00	R/W
0x0791	1938	PM04_startupCmp[1] (Высокий)				
0x0792	1939	PM04_startupCmp[2] (низкий)	0.00	0.00	9999.00	R/W
0x0793	1940	PM04_startupCmp[2] (Высокий)				
0x0794	1941	XA01	2	0	65	R/W
0x0795	1942	XA02	5	0	65	R/W
0x0796	1943	XA03	8	0	55	R/W
0x0797	1944	XA04	1	0	55	R/W
0x0798	1945	XA05	6	0	55	R/W
0x0799	1946	XA06	0	0	55	R/W
0x079A	1947	XA07	0	0	55	R/W
0x079B	1948	XA08	0	0	65	R/W
0x079C	1949	XA09	0	0	65	R/W
0x079D	1950	HB01[0]	2	0	42	R/W
0x079E	1951	HB01[1]	8	0	42	R/W
0x079F	1952	HB01[2]	14	0	42	R/W
0x07A0	1953	HB01[3]	22	0	42	R/W
0x07A1	1954	HB01[4]	20	0	42	R/W
0x07A6	1959	HC01[0]	1	0	7	R/W
0x07A7	1960	HC01[1]	2	0	7	R/W
0x07A8	1961	HC03[0]	0	0	9	R/W
0x07A9	1962	HC03[1]	0	0	9	R/W
0x07AC	1965	HCF1	10	10	2000	R/W
0x07AD	1966	HD01[0]	1	0	25	R/W
0x07AE	1967	HD01[1]	2	0	25	R/W
0x07AF	1968	HD01[2]	5	0	25	R/W
0x07B0	1969	HD01[3]	6	0	25	R/W
0x07B1	1970	HD01[4]	3	0	25	R/W
0x07B2	1971	HD01[5]	12	0	25	R/W
0x07B3	1972	HD01[6]	0	0	25	R/W
0x07B6	1975	PC72_EnvProtSpeed_HIDDEN	55	20	120	R/W
0x07B7	1976	PG03_ModCmp_Model	0	0	7	R/W

0x07B9	1978	HCD1_Delay	0	0	50	R/W
0x07BA	1979	HCI1_Impulse	20	1	50	R/W
0x07BB	1980	PC73_enabEnvelop_HIDDEN	1	0	1	R/W
0x07BC	1981	PC74_minOUTbristolCmp_HIDDEN	10.00	0.00	100.00	R/W
0x07BD	1982	PC75_TimeForceCmpBackEnv_HIDDEN	300	0	999	R/W
0x07E3	2020	PC80_LimitMin_Unloading	100.00	0.00	100.00	R/W
0x07E4	2021	PC81_SetCool_Unloading	25.0	0.1	95.0	R/W
0x07E5	2022	PC82_SetHeat_Unloading	15.0	0.0	176.0	R/W
0x07E6	2023	PC83_DiffUnloading	5.0	0.1	36.0	R/W
0x07E8	2025	PC85_Enable_ReturnOil	0	0	2	R/W
0x07E9	2026	PC86_Oil_WaitTime	5	0	999	R/W
0x07EA	2027	PC87_Oil_ForceCmpTime	60	0	999	R/W
0x07EB	2028	PC88_MinPerc_Oil	40.00	0.00	100.00	R/W
0x07EC	2029	Pr28_TipoAzionePerAntigelo	3	0	3	R/W
0x07ED	2030	Pd30_Включить_Резистор_Бака	0	0	1	R/W
0x07EE	2031	Pd31_SetPoint_Tank_Resistor	3.0	-10.0	86.0	R/W
0x07EF	2032	Pd32_Diff_Tank_Resistor	5.0	0.0	36.0	R/W
0x07F0	2033	PP15_Antigrip_PumpOFF_Days	3	0	30	R/W
0x07F1	2034	PP16_Antigrip_PumpON_Time	30	5	999	R/W
0x07F2	2035	PV65_TimeDeltaSH_NZ	5	1	60	R/W
0x07F3	2036	PV66_DeltaNegSH_NZ	0,2	0.1	2.0	R/W
0x07F4	2037	PV67_DeltaPosSH_NZ	1.0	0.1	2.0	R/W
0x07F5	2038	PF01_FansRegType	0	0	4	R/W
0x07F6	2039	PF61_FansReg_V1	20.00	0.00	100.00	R/W
0x07F7	2040	PF62_FansReg_V2	40.00	0.00	100.00	R/W
0x07F8	2041	PF63_FansReg_V3	60.00	0.00	100.00	R/W
0x07F9	2042	PF64_FansReg_V4	80.00	0.00	100.00	R/W
0x07FA	2043	PC57_minRPSForceVar_HIDDEN	2.0	0.0	20.0	R/W
0x07FB	2044	PP36_setHT_ACS	70.0	0.0	194.0	R/W
0x07FC	2045	PP37_diffHT_ACS	10.0	0.0	36.0	R/W
0x07FD	2046	PP38_setHT_PS	100.0	0.0	266.0	R/W
0x07FE	2047	PP39_diffHT_PS	10.0	0.0	36.0	R/W
0x07FF	2048	PM94_TaraturaAux1	0.0	-36.0	36.0	R/W
0x0800	2049	PM95_TaraturaAux2	0.0	-36.0	36.0	R/W

0x0801	2050	PU01_typeAux1	0	0	1	R/W
0x0802	2051	PU02_setAux1	20.0	-50.0	302.0	R/W
0x0803	2052	PU03_diffAux1	2.0	0.0	36.0	R/W
0x0804	2053	PU04_minOutAux1	0.00	0.00	100.00	R/W
0x0805	2054	PU05_maxOutAux1	100.00	0.00	100.00	R/W
0x0806	2055	PU06_minTypeAOaux1	1	0	1	R/W
0x0807	2056	PU21_typeAux2	0	0	1	R/W
0x0808	2057	PU22_setAux2	20.0	-50.0	302.0	R/W
0x0809	2058	PU23_diffAux2	2.0	0.0	36.0	R/W
0x080A	2059	PU24_minOutAux2	0.00	0.00	100.00	R/W
0x080B	2060	PU25_maxOutAux2	100.00	0.00	100.00	R/W
0x080C	2061	PU26_minTypeAOaux2	1	0	1	R/W
I		T. Control of the Con	I	I	I	I

c -pro 3 nano HPRU Руководство по использованию версии 4.1 ПТ - 09/21 Код 144CP3NHE414

EVCO SpA

Via Feltre 81, 32036 Седико Беллуно ИТАЛИЯ Телефон +39 0437 8422 Факс +39 0437 83648 info@evco.it www.evco.it