Содержание

Глава 1 Приемка изделия и описание модели	5
1.1 Приёмка изделия	5
1.1.1 Позиции для приёмки	5
1.1.2 Шильдик сервоусилителя	5
1.1.3 Шильдик севодвигателя	6
1.2 Наименования элементов	7
1.2.1 Наименования элементов сервоусилителя серии JD	7
1.2.2 Наименования элементов сервомотора	8
1.3 Код моделей сервомоторов и усилителей	8
1.3.1 Сервоусилители	8
1.3.2 Сервомоторы	8
1.3.3 Кабели питания, тормоза и энкодера	9
Глава 2 Меры предосторожности и требования к монтажу	10
2.1 Меры предосторожности	10
2.2 Параметры окружающей среды	10
2.3 Позиционирование при монтаже и свободное пространство	10
2.3.1 Меры предосторожности	10
2.3.2 Установка сервоусилителя	11
Глава 3 Сигналы и разъемы сервопривода JD	12
3.1 Сигналы сервоусилителя	12
3.2 Внешнее подключение привода JD	13
3.3 I/O интерфейс сервопривода JD	14
3.4 Разъём Х9 (STO) сервопривода JD	15
3.4.1 Описание	15
3.4.2 Описание клеммника	15
3.4.3 Описание функции STO	15
3.5 Разъмы X1~X6 привода JD	16
3.5.1 Интерфейс X1 (выход энкодера)	17
3.5.2 Интерфейс X2 (RS485)	17
3.5.3 Интерфейс X3 (RS232)	17
3.5.4 Интерфейс X4 (CAN)	18
3.5.5 Интерфейс X5 (Master Encoder)	18
3.5.6 Интерфейс X6 (Encoder in)	19
Глава 4 Цифровая панель оператора	20
4.1 Введение	20
4.2 Работа с панелью	22
Глава 5 Краткое описание ПО JD-PC	24
5.1 Установка программного обеспечения	24
5.2 Быстрый старт	24

	Kinco [®] Automation
5.2.1 Настройка оборудования для запуса JD-PC	
5.2.2 JD-PC Программное обеспечение	
5.3 Меню ввода	
5.4 Управление приводом	
5.4.1 Основное управление	
5.4.2 Контур управления	
5.4.3 Порт вх./вых.	
5.4.4 Режим работы	
5.4.5 Информация о объекте	
5.4.6 Конфигурация привода	
5.4.7 Настройка ECAN (CANopen PDO настройки)	
5.4.8 Осциллограф	
5.4.9 Контроль ошибок	41
5.4.10 История ошибок	
5.4.11 Панель управления	
5.4.12 Initialize/Save	
5.4.13 Свойства привода	
Глава 6 Выбор двигателя, Пробное включение и список параметров.	
6.1 Конфигурация двигателя и привода	
6.1.1 Таблица выбора двигателя для сервопривода JD	
6.1.2 Порядок выбора двигателя	
6.2 Пробный запуск и описание параметров	46
6.2.1 Цель пробного запуска	
6.2.2 Меры предосторожности	
6.2.3 Последовательность действий	
6.2.4 Схема пробного запуска	
6.3 Описание параметров	
Перечень параметров: Группа F000 (уставки команд)	47
Перечень параметров: группа F001 (уставки отображения данных	x)49
Перечень параметров: группа F002 (уставки регуляторов)	
Перечень параметров: группа F003 (настройка входов/выходов и	шаблонов операций)53
Перечень параметров: Группа F004 (уставки мотора)	
Перечень параметров: Группа F005 (уставки привода)	58
Глава 7 Работа с каналами ввода/вывода	60
7.1 Входные дискретные сигналы	60
7.1.1 Полярность входных дискретных сигналов	
7.1.2 Эмуляция входных дискретных сигналов	
7.1.3 Индикация статуса входных дискретных сигналов	
7.1.4 Адреса и функции входных дискретных сигналов	
7.1.5 Схема подключения входных дискретных сигналов	67
7.2 Выходные дискретные сигналы	
7.2.1 Управление полярностью выходных дискретных сигналов	68
7.2.2 Эмуляция выходных дискретных сигналов	
7.2.3 Индикация статуса дискретных выходов	

7.2.4 Адреса и функции дискретных выходов	69
7.2.5 Слема подключении дискретных выходов	71
	74
8.1 Режим импульсного управления (режим -4)	
8.1.1 Схема подключении в режиме импульсного управления	
8.1.2 Параметры режима импульсного управления	
8.1.3 Примеры импульсного режима управления	80
8.2 Режим контроля скорости (режим "-3" или "3")	
8.2.1 Подключения в режиме аналогового управления скоростью	
8.2.2 Параметры режима аналогового управления скоростью	
8.2.3 Аналоговая обработка сигналов	85
8.2.4 Процедура расчетов для режима аналогового управления скорость	87
8.2.5 Примеры режима аналогового управления скоростью	87
8.3 Режим контроля момента ("4" Mode)	
8.3.1 Схема подключения для режима аналогового контроля момента	
8.3.2 Параметры для режима аналогового контроля момента	
8.3.4 Процедура расчетов для режима аналогового управления моментом	
8.5.5 Примеры режима аналогового управления моментом	
8.4 Режим позиционирования по заложенным программам (режим 1)	
8.5 Режим контроля скорости по предустановленным программам (режим -5 г	1ЛИ <i>5)</i> 100
8.6 Режим внешнего контроля по моменту (4 Режим)	108
8.7 Режим поиска нулевой точки (6 Режим)	108
Глава 9 Контроль производительности	122
9.1 Реверс в автоматическом режиме	122
9.2 Настройка параметров производительности привода	123
9.2.1 Ручная настройка	124
9.2.2 Автонастройка (только для регулятора скорости)	128
9.3 Предотвращение колебаний	131
9.4 Пример отладки	133
9.4.1 Осциллограф	133
9.4.2 Порядок настройки параметров	133
Глава 10 Связь	140
10.1 Интерфейс RS232	140
10.1.1 Подключение интерфейса RS232	140
10.1.2 Параметры связи RS232	140
10.1.3 Транспортный протокол	141
10.1.3.1 Протокол данных	142
10.2 Интерфейс RS485	
10.2.1 Подключение интерфейса RS485	
10.2.2 Параметры связи RS485	
10.2.3 MODBUS RTU	

10.3 Интерфейс CANopen	146
10.3.1 Описание устройства	147
10.3.2 Краткое описание прграммы	148
10.3.2.1 EDS	148
10.3.2.2 SDO	148
10.3.2.3 PDO	150
10.3.3 CANopen Параметры Связи	153
Глава 11 Сигнализация и устранение неполадок	
11.1 Аварийные сообщения	
11.2 Причины аварийных сообщений и выявление неисправностей	
Глава 12 Приложения	
Приложение 1: Выбор тормозного резистора	156
Приложение 2: Выбор предохранителя	156

Глава 1 Приемка изделия и описание модели

1.1 Приемка изделия

1.1.1 Позиции для приемки (включая провода)

Позиция для приемки	Примечание					
Соответствует ли поставленная модель	Проверьте шильдик на сервомоторе и на					
сервопривода CD-серии заказанной	сервоусилителе					
модели						
Полный ли состав комплектующих	Проверьте упаковочный лист					
Присутствуют ли какие-либо	Полностью проверьте внешний вид					
повреждения	изделия для выявления повреждений,					
	которые могли быть нанесены при					
	транспортировке					
Ослаблены ли какие-либо винты	Проверьте винты на ослабленность с					
	помощью отвертки					
В порядке ли провода мотора	Купить набор комплектующих к мотору,					
	если провода не куплены					

Таблица 1-1 Приемка изделия

1.1.2 Шильдик сервоусилителя

	Kinco	AC SERVO DRIVER	- Модель
Питание (вход)	AC INPUT	AC OUTPUT	Питание (выход)
Напряжение питания	1PH . 3PH Ac220 -20/+15%	3PH 0-Uin 10.0A	🕇 Параметры выхода
Ток потребления	47-63Hz 14.0A	2000W 0 400Hz	Выходная мощность
	Kinco Electric (Shenzhen) Lto MADE IN CHINA	L.	
Серийный номер	S/N:J461100XX*********		
	Bar	code	

Рисунок 1-1 Шильдик сервоусилителя

5

1.1.3 Шильдик серводвигателя

Рисунок 1-2 Шильдик серводвигателя

1.2 Наименования элементов

1.2.1 Наименования элементов сервоусилителя серии JD

Рисунок 1-3 Наименования элементов сервоусилителя JD

1.2.2 Наименования элементов сервомотора

Рисунок 1-4 Наименования элементов сервомотора (тормоз отсутствует)

1.3 Код моделей сервомоторов и усилителей

1.3.1 Сервоусилители

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48 www.systemcontrol.ru samara@systemcontrol.ru info@systemcontrol.ru

8

1.3.3 Кабели питания, тормоза и энкодера

Глава 2 Меры предосторожности и требования к монтажу

Сервоусилитель Kinco CD-серии устанавливается на монтажную панель. Если усилитель установлен неправильно, могут возникнуть сбои в его работе. Для предотвращения этого устанавливайте усилитель соблюдая следующие меры предосторожности.

2.1 Меры предосторожности

- 1. Плотно затяните винты, которыми крепится мотор;
- 2. Удостоверьтесь в надежном креплении усилителя;
- 3. Не пережимайте кабели между усилителем и мотором;
- 4. Используйте муфту или карданный вал при соединении вала мотора и вала приводимого оборудования в целях согласования центрирования валов;
- 5. Не допускайте попадания проводящих материалов (например, винтов или металлической стружки) или горючих материалов (например, машинного масла) в сервоусилитель;
- 6. Предохраняйте сервоусилитель и сервомотор от падений и ударов;
- 7. Не используйте поврежденный сервопривод или сервопривод с какими-либо поврежденными компонентами.

2.2 Параметры окружающей среды

	таслица 2 т парамотры окружающой ороды
Параметр	Значение
Температура	При работе: 0°С - 40°С (без обледенения)
	При хранении: - 10°C - 70°C (без обледенения)
Влажность	При работе: ниже 90% (без конденсата)
	При хранении: ниже 90% (без конденсата)
Атмосфера	В помещении (без воздействия прямых солнечных лучей),
	отсутствие коррозионного или горючего газа, отсутствие
	масляных паров или пыли
Высота	Ниже 1000м над уровнем моря
Вибрации	5.9 м/с2

Таблица 2-1 Параметры окружающей среды

2.3 Позиционирование при монтаже и свободное пространство

2.3.1 Меры предосторожности

- 1. Для предотвращения сбоев устанавливайте сервоусилитель в правильную позицию;
- 2. Для предотвращения сбоев убедитесь, что пространство между сервоусилителем и внутренней стенкой

монтажного шкафа, а также между соседними сервоусилителями не меньше, чем указано в спецификации.

2.3.2 Установка сервоусилителя

1. Установка сервоусилителя:

Рисунок 2-1 Установка сервоусилителя

2. Установка нескольких сервоусилителей:

Убедитесь, что имеется достаточно пространства между сервоусилителем и внутренней стенкой монтажного шкафа. Кроме того, установите вытяжные вентиляторы над сервоусилителями. Для предотвращения местного перегрева вы должны обеспечить равномерное распределение тепла внутри монтажного шкафа.

11

Глава 3 Сигналы и разъемы

3.1 Сигналы сервоусилителя

Разъем	Модель	Обозначение		Функция			
X1	JD430,JD620	E	NCODER OUT	Выходной сигнал энкодера			
X2	JD430,JD620	F	S485	Интерфейс RS485			
X3	JD430,JD620	F	S232	Интерфейс RS232			
X4	JD430,JD620	С	AN	Интерфейс С/	ANbus		
X5	JD430,JD620	Ν	IASTER	Вход импульс	ного датчика		
		E	NCODER	вход импульс/	/направление		
X6	JD430,JD620	E	NCODER IN	Входной сигна	ал с энкодера		
			24VS	Внешнее пита	ние логики (24В +/- 15%), ток до 0.5А		
			GNDS				
			COMI1	Общие порт д	ля цифровых входных сигналов		
			DIN1				
			DIN2]			
			DIN3				
		А	DIN4	Дискретные входы Логическая единица: 12.5В ~ 24В Логический ноль: менее чем 5В			
			COMI2				
			DIN5				
			DIN6				
			DIN7]			
			DIN8	1			
X7	.1D430.1D620		OUT7+	Максимальны	й выходной ток: 100mA		
	00400,00020		OUT7-	Максимальное напряжение: 24V			
			GA	Нулевой конта	акт аналогового сигнала		
			AIN1	Аналоговый вход 1. Входное сопротивление 20			
			AIN2	Аналоговый в	вход 2. Входное сопротивление 200К		
				ОUT1+ Дискретный Выход 1+ Максимальный в	Максимальный выходной ток: 100mA		
		в	OUT1-	Дискретный выход 1 -	Максимальное напряжение: 24V		
			C	OUT2+	Дискретный выход 2+	Максимальный выходной ток: 100mA,	
			OUT2-	Дискретный выход 2-	Максимальное напряжение: 24V		
			OUT3	Дискретный	Максимальный выходной ток: 500mA,		

Таблица 3-1 Сигналы сервоусилителя

				Kinco Automation	
			выход3	Максимальное напряжение: 24	
		OUT4	Дискретный	Максимальный выходной ток: 500mA,	
		0014	выход4	Максимальное напряжение: 24	
			Дискретный	Максимальный выходной ток: 500mA,	
		0013	выход5	Максимальное напряжение: 24V	
		24VO	Питание диск	ретного выходного сигнала OUT6	
		СОМО	Общая клемм	а цифровых выходных сигналов	
		OUTEL	Дискретный		
		0010+	выход6+	Максимальный выходной ток: 500mA	
			Дискретный	используется для тормоза двигателя	
		0010-	выход6+		
X8	JD430,JD620	U/V/W/PE	Силовое пита	ание двигателя	
X9	JD430,JD620	STO	Safty interface	e (STO)	
¥10		R/S/T;RB+/RB-;DC	Питание (220VAC); Клемма тормознго резистора;		
	JD430,JD020	+/DC-	Шина постоян	ного тока	

3.2 Внешнее подключение привода JD

3.3 І/О интерфейс сервопривода JD

Питание логики DC+	24VS	1		• •	15	GA	Земля входных аналоговых сигналов
Питание логики DC-	GNS	2		•	16	AIN1	Аналоговый вход1
Общая клемма входных сигналов	COMI	3		•	17	AIN2	Аналоговый вход2
Цифровой вход1	DIN1	4			18	OUT1+	Цифровой выход1+
Нифровой вхол2	DIN2	5			19	OUT1-	Цифровой выход1-
Пифровой вход3	DIN3	6			20	OUT2+	Цифровой выход2+
Цифровой входа	DIN4	7		. 1	21	OUT2-	Цифровой выход2-
Общая клемма входных сигналов	COMI2	8	H	- 1	22	OUT3	Цифровой выход3
Иифровой вход5	DINS	9			23	OUT4	Цифровой выход4
Цифровой входб	DING	10		•	24	OUT5	Цифровой выход5
Цифровой вход7	DIN7	11		•	25	24V0	Питание цифрового выхода
Цифровой вход8	DIN8	12	•	•	26	сомо	Общая клемма цифровых выходов
Цифровой выход7+	OUT7-	13		•	27	OUT6+	Цифровой выход6+
Цифровой выход7-	OUT7-	14		•	28	OUT6-	Цифровой выход6-

Рис.3-2 І/О интерфейс сервопривода JD

Рис.3-3 Внешнее подключение клеммника X7 JD привода

3.4 Разъём X9 (STO) сервопривода JD

3.4.1 Описание

Фукция STO (безопасное отключение крутящего момента) используется, что бы отключить сигнал внутренней цепи питания сервопривода для защиты.

Сервопривода серии JD имеют два канала управления входного сигнала STO. Привод отключит выходной ток на двигатель, если будет действовать хотя бы один из сигналов STO. Если вы не хотите использовать эту функцию, пожалуйста, обратитесь к пукту 3.4.3, что бы отключить функцию STO, или привод выдаст сигнал тревоги "200.0".

3.4.2 Описание клеммника

Наименование	Обозначение	Описание	
	+24V	Входное напряжение DC 24V	
	STOA+	STO функция	
STO	STOA-	вход А	
	STOB+	STO функция	
	STOB-	вход В	
	GND	Заземление сигнальных цепей	

3.4.3 Описание функции STO

Рис.3-4 Отключение функции STO сервопривода JD

Примечание: Когда нужно запретить функцию STO установите перемычки, как показано на рисунке 3–4.

Для того чтобы реализовать функцию защиты привода, интерфейс STO может быть использован для подключения к контроллерам защиты, защитным выключателям, защитным датчикам и так далее.

Рис.3-5 Схема подключения интерфейса STO и защитного контроллера

3.5 Разъмы X1~X6 привода JD

В качестве разъёмов используются D-SUB разъёмы, изображённые на рисунке.

3.5.1 Интерфейс Х1 (выход энкодера)

название	контакт	сигнал	описание	функция
	1	+5V	Питание	
	5 72	70	Выход с открытым	
	5		коллектором	
	6	GND	0V	
Encoder out	2	А	Выход фазы А	Encodder
(9-Pin female)	7	/A		output
	3	В	Выход фазы В	
	8	/B		
	4	Z	Выход фазы Z	
	9	/Z		

3.5.2 Интерфейс X2 (RS485)

название	контакт	сигнал	описание	функция
RS485 (9-Pin female)	1	NC	N/A	RS485 interface
	5	GND	0V	
	6	+5V	Питание	
	2	RX	Приём данных	
	7	/RX		
	3	ТΧ	Передача данных	
	8	/TX		
	4	NC	N/A	
	9	NC		

3.5.3 Интерфейс X3 (RS232)

название	контакт	сигнал	описание	функция
	1	NC	N/A	
	2	ТΧ	Передача данных	
	3	RX	Приём данных	DC000
DODD	4	NC	N/A	
(0 Din fomolo)	5	GND	Земля	KSZ3Z
	6	NC	NI/A	IIILEITACE
	7	NC	IN/A	
	8	NC		
	9	NC		

название	контакт	сигнал	описание	функция
CAN (9-Pin male)	1	NC		CAN bus
	5	NC		
	6	NC		
	2	CAN_L	CAN_L	
	7	CAN_H	CAN_H	
	3	GND	Земля	
	8	NC		
	4	NC		
	9	NC		

3.5.4 Интерфейс X4 (CAN)

3.5.5 Интерфейс X5 (Master Encoder)

название	контакт	сигнал	описание	функция
	4	Pul+/A1+/CW+	Импульсный сигнал А1	
	5	Pul-/A1-/CW-	входа энкодера. Поддержка ортогонального ввода импульсный сигнал	
	10	Dir+/B1+/CCW+	Импульсный сигнал А1	
Master Encoder (Triple rows	15	DIR-/B1-/CCW-	входа энкодера. Поддержка ортогонального ввода импульсный сигнал	Master encoder
	9	Z1	Фаза сигнала Z1 входа энкодера	
	14	/Z1		
15-Pin female)	1	+5V	Питание	input/pulse
	2	GND	0V	input
	3	NA	N/A	
	8	А	Deen A prove ouronope	
	13	/A	Фаза А влода энкодера	
	7	В	Фаза В входа энколера	
	12	/B	тизи В влоди эпкодера	
	6	Z	Фаза 7 входа энколера	
	11	/Z	±изи Z влоди эпкодори	

3.5.6 Интерфейс X6 (Encoder in)

название	контакт	сигнал	описание	функция
	1	+5V	5V выход	
	9	GND	0V	
	8	PTC_IN	РТС ввода двигателя	
	2	А	Фаза А входа энкодера	
	10	/A		
Encoder in	3	В	Фаза В входа энкодера	
(Double	11	/B		Motor
rows	4	Z	Фаза Z входа энкодера	encoder
15-Pin	12	/Z		input
female)	5	U	Фаза U входа энкодера	
	13	/U		
	6	V	Фаза V входа энкодера	
	14	/V		
	7	W	Фаза W входа энкодера	
	15	/W		

Глава 4 Цифровая панель оператора

4.1 Введение

Цифровая панель оператора служит для установки параметров сервопривода, выполнения действий, или отображения состояний. В таблице 4-1 описаны все возможности и функции цифровой панели оператора.

Таблица 4-1 Отображаемые параметры и функции цифровой панели оператора

- Number 🕘 Point ENTER MODE Kev Номер/ Точка/ Функция Кнопка Показывает положительное ли число или отрицательное. Наличие означает отрицательное; (1)отсутствие – положительное. 1. При установке параметров разделяет текущую группу настроек и индекс настройки в этой группе. (2)2. Отображает старшие 16 бит текущего 32-битного значения, отображаемого в реальном времени. 3. Отображает более раннюю по времени ошибку, при просмотре истории ошибок (F007). 1. Показывает текущий формат отображения данных, при их отображении в реальном времени. Наличие означает, что данные отображаются в шестнадцатеричном формате, (3) отсутствие - в десятичном. 2. Отображает более позднюю по времени ошибку, при просмотре истории ошибок (F007). Наличие показывает, что отображаются внутренние данные. 1. (4)2. Мигании означает, что силовая часть сервоусилителя находится в работе. 1. Переключение между разделами меню. MODE 2. При настройке параметров, короткое нажатие кнопки переключает на следующий настраиваемый разряд, а долгое нажатие возвращает в предыдущее состояние. Нажатие 🛦 увеличивает уставку на 1; долгое нажатие 🛦 последовательно увеличивает значение. Нажатие ▼ уменьшает уставку на 1; долгое нажатие ▼ последовательно уменьшает ▼ значение. Нажатие производит вход в выбранное меню. 1. ENTER 2. Сохраняет текущие параметры во включенном состоянии. 3. Подтверждает введение параметра после его изменения.

	4. Долгое нажатие переключает между старшими/младшими 16-битными разрядами при
	отображении 32-битного значения в реальном времени.
PL	Активирует сигнал концевого ограничителя прямого хода.
nL	Активирует сигнал концевого ограничителя обратного хода.
Pn.L	Активирует сигнал концевых ограничителей.
Мигание	Показывает, что существуют какие-либо аварийные ошибки.
любого	
значения	

Если параметр отображается в десятичной системе:

Когда мигает разряд единицы, нажмите ▲ для увеличения на 1 текущего значения; нажмите ▼ для уменьшения на 1 текущего значения. Когда мигает разряд десятки, нажмите ▲ для увеличения на 10 текущего значения; нажмите ▼ для уменьшения на 10 текущего значения. Когда мигает разряд сотни, нажмите ▲ для увеличения на 100 текущего значения; нажмите ▼ для уменьшения на 100 текущего значения. Когда мигает разряд тысячи, нажмите ▲ для увеличения на 100 текущего значения. Когда мигает разряд тысячи, нажмите ▲ для увеличения на 100 текущего значения.

Если параметр отображается в шестнадцатеричной системе:

Когда мигает разряд единицы, нажмите ▲ для увеличения на 1 текущего значения; нажмите ▼ для уменьшения на 1 текущего значения. Когда мигает разряд десятки, нажмите ▲ для увеличения на 0Х10 текущего значения; нажмите ▼ для уменьшения на 0Х10 текущего значения. Когда мигает разряд сотни, нажмите ▲ для увеличения на 0Х100 текущего значения; нажмите ▼ для уменьшения на 0Х100 текущего значения. Когда мигает разряд тысячи, нажмите ▲ для увеличения на 0Х1000 текущего значения на 0Х1000 текущего значения. Когда мигает разряд тысячи, нажмите ▲ для увеличения на 0Х1000 текущего значения.

При настройке десятичного параметра, режим отображения автоматически переключается в шестнадцатеричную систему, если установленное значение выше 9999 или меньше -9999. В этом случае включается 3-я десятичная точка.

4.2 Работа с панелью

Рисунок 4-1 Работа с цифровой панелью оператора

Примечание: Если на дисплее отображаются какие-либо меню настройки и нет нажатий на кнопки, то через 20 секунд автоматически включается отображение текущих состояний переменных, во избежание случайных нажатий на кнопки и, как следствие, ошибочного ввода параметров.

Пример 4-1: Установка делителя электронного редуктора в 10000 через

переключение системы исчисления

- 1. Нажмите **МОDE**. Отобразится главное меню. Выберите **F003**.
- 2. Нажмите ENTER. Отобразится интерфейс выбора адреса параметра.
- 3. Нажимайте ▲ до выбора адреса **d3.35**.
- 4. Нажмите ENTER для показа текущего значения параметра d3.35. Снова нажмите ENTER для изменения параметра d3.35. При этом 1-й разряд справа замигает. Коротким нажатием MODE три раза переместитесь в первый разряд слева. Затем нажмите ▲. Значение увеличится до 9000. Это десятичное значение.
- Нажмите ▲ снова. Содержимое дисплея изменится на "271.0", и 3-я слева десятичная точка будет мигать. В этом случае значение шестнадцатеричное. Нажмите ENTER для подтверждения введенного значения. 1-я десятичная точка справа замигает. Это означает, что делитель электронного редуктора теперь равен 10000.

Рисунок 4-2 Преобразование системы исчисления

Пример 4-2: Установка скорости в 1000 RPM/-1000 RPM через изменение

отдельных разрядов

- 1. Нажмите **МОDE**. Отобразится главное меню. Выберите **F000**.
- 2. Нажмите ENTER. Отобразится интерфейс для выбора адреса параметра.
- 3. Нажимайте ▲ до выбора адреса **d0.02**.
- 4. Нажмите ENTER для отображения текущего значения параметра d0.02. Нажмите ENTER снова для модификации параметра d0.02. При этом 1-й разряд справа замигает.
- 5. Короткое нажатие **MODE** три раза переместит на 1-й разряд слева. Нажмите ▲ для изменения параметра в 1.Нажмите **ENTER** для подтверждения введенного значения. 1-я справа десятичная точка замигает. Это означает, что скорость установлена в 1000 RPM.
- 6. Нажмите ▼ для изменения значения в -1. При этом 1-я слева десятичная точка замигает, показывая, что текущее значение отрицательное. Нажмите ENTER для подтверждения введенного значения. 1-я справа десятичная точка замигает. Это означает, что установлена скорость -1000 RPM.

Глава 5 Краткое описание ПО JD-PC

5.1 Установка программного обеспечения

Это программное обеспечение не нужно устанавливать. Пользователи могут загрузить программное обеспечение JD-PC с нашего сайта: www.kinco.cn.

5.2 Быстрый старт

5.2.1 Настройка оборудования для запуса JD-PC

Программное обеспечение JD-PC можно использовать для настройки всех параметров сервопривода JD серии через RS232 или CANopen порт. Пожалуйста, обратитесь к главе 3 для подключения сервопривода и двигателя перед его использованием.

• Конфигурация системы для программирования через RS232.

Сервопривод серии JD такой как JD430.

24VDC питание для привода.

Кабель для программирования, схема выглядит следующим образом:

PC	JD	Servo RS232 Interface(X3)
RxD 2		TXD 2
TxD 3		RXD 3
GND 5		- GND 5

• Конфигурация системы для программирования через CANopen.

Сервопривод серии JD такой как JD430.

24VDC питание для привода.

PEAK series USB or LPT adapter from PEAK company.

Схема кабеля связи СА Nopen представлена на следующем рисунке:

Pecan	JD Servo CAN Interface(X4)
CAN_L 2	CAN_L 2
CAN_H 7	CAN_H 7

5.2.2 JD-PC Программное обеспечение

1. Откройте папку JD-PC и дважды щёлкните значок

,откроется окно, как следующем рисунке:

2. Новый проект

3. Всплывёт диалоговое окно **Commutation Way** если используете последовательный порт, затем выберите **RS232C** и нажмите **Next**

Reg Commutation Way	
C R\$485	
C USB	
O CAN	
• RS232C	
O Off Line	
Next	Cancel

если используете CAN средства, тогда выберите CAN и нажмите Next

Reg Commutation Way	
C RS485	
C USB	
© CAN	
C RS232C	
C Off Line	
Next	Cancel

4. Назначте СОМ порт, скорость передачи данных, номер привода в сети соответствующий значению в сервоприводе. Затем нажмите кнопку **Comm Status**

1	•
😤 Property	
СОМ	C0M3 -
Baudrate	38400 -
Driver ID	1
Comm Status	

Если используете CAN соединение, установите такие параметры как скорость передачи данных,

номер привода в сети. Затем нажмите кнопку Comm Status	
CAN Ver : 2.8 Detail	
Baudrate 500 KBit/s 🗸	
Driver ID 1	
Comm Status	

5. Проверьте информацию в правом нижнем углу. Если там написано Comm Status: Open COM1 38400 и Comm Status станет зелёный, значит связь с приводом установлена успешно.

26

Kinco[®] Automation

Rs KincoServo	
File Computer Driver Motor Extend View Help	
Re Property CO B 23	Kinco*
COM COM1 - Baudrate 38400 - Driver ID 1	
Comm Status	P. Bra
	www.kinco.cn
	Comm Status: Open COM1 38400

Когда используете CAN соединение, если в правом нижнем углу надпись Comm Status: Open 500K Bit/S и Comm Status стал зелёный, значит связь с приводом установлена успешно.

5.3 Меню ввода

Откройте программу как показано в следующем рисунке:

Описание строки меню представлено в таблице

название	описание
File	используется для: новый, открыть, сохранить проект
Computer	используется для установки своства связи
Driver	используется для управления приводом, подробнее см. пункт 5.4
Motor	используется для настройки параметров двигателя, подробнее см. 6.1.3
Extend	используется для изменения языка и чтения / записи параметров драйвера.

5.4 Управление приводом

5.4.1 Основное управление

	name	data	unit	
1*	Operation_Mode_Buff	0	DEC	
2*	Status_Word	2f	HEX	
3*	Pos_Actual	0	inc	
4*	Real_Speed_RPM	0	rpm	
5*	I_q	0.054	Ap	
6	Operation_Mode	3	DEC	-
7	CMD_q	0.000	Ap	
8	Pos_Target	0	inc	
9	SpeedDemand_RPM	100	rpm	2
10	Control_Word	f	HEX	2
11	Switch_On_Auto	0	DEC	•
12	CMD_q_Max	13.092	Ap	

В данном меню, можно сделать некоторые основные операции управления для привода. О более подробной информации о режиме работы, пожалуйста, обратитесь к Главе 8.

28

Kinco[®] Automation

Пример 5-1: Используйте программное обеспечение JD-PC для управления сервопривода, работающего в скоростном режиме согласно руководства.

Шаг1: Отменить настройку по умолчанию DIN1 и DIN3 в соответствии с примером 5-2. Шаг2: Установить основные параметры в соответствии с "Скоростной режим" в главе 8. Выделенное на рисунке красной линией, означает, что сервопривод находится в режиме скорости Скорость составляет 100 оборотов в минуту. Установите SpeedDemand_RPM как отрицательное значение, если нужно запустить в обратном направлении.

5.4.2 Контур управления

Poa	iition Loop			
	name	data	unit	
1.	Крр	10.000	Hz	
2	K_Velocity_FF	100.000	8	
3	K_ACC_FF	32767	DEC	
4	Pos_Filter_N	1.23	DEC	
5	Max_Following_Error	10000	inc	
y Vel	ocity Loop			
	name	data	unit	
1	Kup	42	DEC	
2	Kui	1	DEC	
3	Notch_N 550.000 Notch_On 0 Speed Fb_N 240.000	ch N 550,000	550,000 Hz	Hz
4		0	DEC	
5		240.000	Hz	
6	Speed_Mode	0	DEC	
Cur	rent Loop			
	name	data	unit	
1*	Driver IIt Real	0.000	%	
2*	Driver IIt Max	14.137	Ap	
3*	Motor_IIt_Real	0.000	%	
4*	Motor_IIt_Max	4.927	Ap	
5*	CMD_q_Limit	13.092	Ap	
6	CMD_q_Max	13.092	Ap	
7	Кср	5188	DEC	
8	Kci	112	DEC	

В этом меню используется настройки параметров для выполнения управления сервопривода. Подробнее см. в главе 9.

Пожалуйста, будьте осторожны при установки параметров в токовой петли! Если пользователи используют сервопривод JD вместе с серводвигателями, предоставляемых компанией Kinco, то устанавливать параметры токовой петли не нужно.

5.4.3 Порт вх./вых.

💡 I/O Port			-	
Function Si	imulat	ePolarit	y Real	Virtual
DIN1 driver enable				
DIN2 fault reset			•	•
DIN3 operation mode			•	•
DIN4 P control			•	•
DINS positive limit				•
DIN6 negetive limit			•	•
DIN7 homing signal			•	•
DINS NULL				•
Function	Si	mulate Po	larity	Real
DOUT1 ready	·			
DOUT2 error	••••			•
DOUT3 position reached+ve	ī			•
DOUT4 zero velocity				•
DOUTS motor brake				•
DOUT6 NULL				•
DOUT7 NULL				

Это меню используется для настройки функции и полярности портов ввода / вывода, контроля состояния портов ввода / вывода и имитирования портов ввода / вывода.

Пример 5-2 Использование программного обеспечения JD-ПК для настройки функций порта ввода / вывода

Требование: Отменить функции DIN1, DIN3 и DIN5. Установите DIN2 как сброса по умолчанию, DIN4 как аварийный останов и OUT2 как Reference found. Другие устанавливаются по умолчанию.

Шаг 1: Нажмите кнопку ... рядом с DIN1. Отмените функцию "Driver enable" во всплывающем окне, как показано на рисунке, затем нажмите кнопку ОК.

💡 I/O Port	List				X
Function	ID	Item			
DIN1 driver enable	000	1 driver en	able		
	000	2 fault res	et		
DIN2 fault reset	000	4 operation	mode		
	000	8 P control			
DIN3 operation mode	001	0 positive	limit		
	002	0 negetive	limit		
DIN4 P control ···	004	0 homing si	gnal		
	008	0 reverse c	ommand		
DINS positive limit ···	010	0 internal	speed Ø		
· · · · · · · · · · · · · · · · · · ·	020	0 internal	speed 1		
DIN6 negetive limit ····	040	0 internal	position 0		
	080	0 internal	position 1		
DIN7 homing signal ····	100	0 quick sto	p		
	200	0 Start hom	ing		
DINS NULL	400	0 active co	mmand		
	800	1 internal	speed 2		
Function	800	2 internal	position 2		
DOUT1 ready					
DOUT2 error					
DOUT3 position reached+v	e	OK	C	ancel	

Шаг2: Установите все функции других портов ввода / вывода аналогично шагу1. Затем выберите Driver - Инициализация / Сохранить и нажмите кнопку "Сохранить параметры управления". Окончательные настройки портов ввода / вывода являются следующем рисунке:

🖁 🗑 I/O Port				
Function Si	mulate	Polari	ty Real	Virtual
DIN1 NULL .			•	•
DIN2 fault reset			•	•
DIN3 NULL			•	•
DIN4 quick stop			•	•
DINS NULL			•	•
DIN6 negetive limit			•	•
DIN7 homing signal ····			•	•
DIN8 NULL			•	•
Function	Sim	wlate P	olarity	Real
DOUT1 ready	•••			•
DOUT2 Reference found				•
DOUT3 position reached+ve	i			•
DOUT4 zero velocity				•
DOUTS NULL				
DOUT6 motor brake				
DOUT7 error				•

5.4.4 Режим работы

Это меню используется для настройки и мониторинга объектов в каждом режиме работы. Подробнее см. в главе 9. Следующий раздел меню для импульсного режима.

₽ 5	Basic Operate Control Loop I/O Port						
	Operation Mode	•	Pulse Mode	💡 Pul	se Mode		- 0
	Data Dictionary		Analog Velocity Mode		name	data	unit
	Driver Config ECAN Oscilloscope Error Control Error History Control Panel Initialize/Save Driver Porperty		Analog Torque Mode Multi Position Mode Multi Velocity Mode Homing Mode Auto Tuning Auto Reverse	1* 2 3 4 5 6 7 8	Master_Speed Gear_Master Gear_Slave Gear_Dactor Gear_Divider PD_CW PD_Filter Frequency_Check	0 0 1000 1000 1 3 600	DEC DEC DEC DEC DEC DEC DEC DEC

5.4.5 Информация о объекте

😵 Data Dic	tionary		
Sor	t Ind	lex 💌 Find what	Find next
index	sub	name	A
1000	00	Device_Type	
1001	00	Error_Register	Index: 0x1000
1005	00	Sync_ID	Sub Index: 0x00
1006	00	ECAN_Sync_Period	Name: Device_Type
1008	00	Device_Name	Data Type: Unsigned32
1009	00	Product_Version	Attribute: only readable
100A	00	Software_Version	device name
100B	00	ID_Com	
1000	00	Guard_Time	
100D	00	Life_Time_Factor	
100E	00	Node_Guarding_ID	
1010	00	Group_Store	
1010	01	Store_Loop_Data_301	
1010	02	Store_Device_Data_301	
1010	03	Store_Motor_Data_301	
1014	00	Emergency_Mess_ID	
1017	00	Producer_Heartbeat_Time	
1018	00	Group_ID	
1018	01	Vendor_ID	v v
∢		4	٠

Это меню используется для запроса адреса и описания всех объектов привода JD. Как показано на рисунке выше, с левой стороны есть индекс, подиндекс и название объекта. С правой стороны имеется описание объекта.

Пример5-3 Используйте программу JD-PC, что бы добавить объект

Требование: Добавьте адрес в любом меню. Здесь мы добавим "CANopen baudrate" в "Basic Operate".

Шаг1: Откройте "Basic Operate" затем щелкните правой кнопкой мыши в окне "Basic Operate". Выберите "add", тогда он будет в всплывающем окне " Data Object".

Шаг2: Введите "скорость передачи данных" в "Найти", затем нажмите кнопку "Найти далее". Он перейдет к объекту «CAN_Baudrate"с индексом адреса 2F81. Описания этого объекта есть в правой части как показано на рисунке.

Sor	t Ind	lex 🚽 Find what baudr	ate	Find next	
index	sub	name			
2616	00	Group_Error			
2616	01	Error_History[6].Error	Index: 0x2	2F81	
2616	02	Error_History[6].DCBUS	Sub Index:	: 0×00	
2616	03	Error_History[6].Speed	Name: CAN	Baudrate	
2616	04	Error_History[6].Current	Data Type	: Unsigned8	
2616	05	Error_History[6].Temperature	Attributes	: writeable real-update	
2616	06	Error_History[6].Mode	CON boude	neip:	
2616	07	Error_History[6].time	LHN DAUURA	ate setting	
2616	08	Error History[6].PWM_State	50. 5000		
2617	00	Group_Error	25. 258k		
2617	01	Error_History[7].Error	12: 125k		
2617	02	Error History[7].DCBUS	5: 50k		
2617	03	Error_History[7].Speed			
2617	84	Error History[7].Current			
2617	05	Error History[7].Temperature			
2617	06	Error History[7].Mode			
2617	07	Error_History[7].time			
2617	08	Error History[7].PWM State	125		
2F81	00	CAN_Baudrate	-		-
<.					

Шаг3: Дважды щелкните объект, чтобы добавить этот объект в меню "Basic_operate".

😪 Basic Operate 💼 📼				
	name	data	unit	
1*	Operation_Mode_Buff	0	DEC	
2*	Status_Word	2f	HEX	
3*	Pos_Actual	0	inc	
4*	Real_Speed_RPM	0	rpm	
5*	I_q	0.000	Ap	
6	Operation_Mode	-4	DEC	
7	CMD_q	0.000	Ap	
8	Pos_Target	0	inc	
9	SpeedDemand_RPM	0	rpm	
10	Control_Word	6	HEX	
11	Switch_On_Auto	0	DEC	
12	CMD a Max	13 092	AD	
13	CAN_Baudrate	50	DEC	

Шаг4: Если вам нужно удалить объект в меню. Щелкните правой кнопкой мыши объект и выберите "Del" для удаления объекта. Если вам нужно знать больше деталей объекта, то щелкните правой кнопкой мыши объект и выберите «помощь», чтобы показать детали.

5.4.6 Конфигурация привода

Это меню используется для настройки параметров, таких как Пароль Пользователя, тормозного резистора, связи RS232 и др.

😵 Drive	er Config		
	name	data	unit
1	User_Secret	1234	DEC
2	Chop_Resistor	ប	Uhm
3	Chop_Power_Rated	0	W
4	Chop_Filter	15.360	S
5	Key_Address_F001	25	DEC
6	RS232_Bandrate	38400.000	Bandrate
7	Frequency_Check	600	DEC
8	ID_Com	1	DEC

Пример 5-4 Используйте JD-ПК, что бы установить пароль пользователя

Шаг1: Установите число "1234" в качестве пароля в объекте "User_Secret", как показано красной рамкой на приведенном выше рисунке.

Шаг2: Нажмите кнопку "Save all control parameters" в закладке Driver >Initialize/Save, что бы сохранить параметры, затем нажмите кнопку "Reboot driver".

Шаг3: Пароль будет активирован после перезагрузки привода. Тогда пользователи не смогут изменить параметры, прежде чем введут правильный парол в разделе "User_Secret" в "Driver Config". Шаг4: Введите 0 в разделе "User_Secret", что бы отменить пароль, после ввода правильного пароля.

5.4.7 Настройка ECAN (CANopen PDO настройки)

Это меню используется для настройки параметров связи CANopen. О подробной информации обратитесь к главе 10.

	name	data	unit
0	Group RX1 PD0	0	DEC
1	RX1 PD01	607a0020	HEX
2	RX1 PD02	6 96 99 998	HEX
3	RX1 PD03	0	HEX
4	RX1_PD04	0	HEX
5	RX1_PD05	0	HEX
6	RX1_PD06	0	HEX
7	RX1_PD07	0	HEX
8	RX1_PD08	0	HEX
9	RX1_ID	201	HEX
10	RX1_Transmission	254	DEC
11	RX1_Inhibit_Time	8	DEC
TPD	01		
	name	data	unit
0	Group_TX1_PD0	0	DEC
1	TX1_PD01	60410010	HEX
2	TX1_PD02	.0	HEX
3	TX1_PD03	0	HEX
4	TX1_PD04	0	HEX
5	TX1_PD05	0	HEX
6	TX1_PD06	0	HEX
7	TX1_PD07	0	HEX
8	TX1_PD08	0	HEX
9	TX1_ID	181	HEX
10	TX1_Transmission	254	DEC
11	TX1_Inhibit_Time	0	DEC
💡 Oth	ers		
	name	data	unit
8 *	Vendor_ID	300	HEX
1*	ECAN_Sync	80	HEX
-	Sune ID	1888	UEY
5.4.8 Осциллограф

Осциллограф может помочь вам настроить параметры сервопривода лучше, наблюдая за кривой скорости, положения и так далее.

Есть два способа открыть осциллограф как изображено на рисунке.

Рис.1 Осциллограф в панели инструментов

Рис. 2. Menu bar--- Driver-- Oscilloscope

Далее приведены параметры в осциллографе.

5.4.9 Контроль ошиб к

Это меню используется для отображения текущей информации об ошибке. Как показано на следующем рисунке, "Нех" данные совпадают с кодом ошибки, отобржаемым на табло сервопривода. Если ошибка станет активной, то индикатор загорится красным цветом. О более подробной информации обратитесь к главе 11.

Примечание: Пожалуйста, будьте осторожны при маскировании ошибки, не все ошибки могут быть замаскированы.

5.4.10 История ошибок

Сервопривод JD предусматривает 7 групп информаций об ошибках. Пользователи могут запрашивать такую информацию как код ошибки, напряжения, тока, температуры, скорости, режима работы, накопленного рабочего времени привода и так далее.

	name	data	unit	
1*	Error_History[0].Error	208	HEX	
2*	Error_History[0].DCBUS	296	U	E
3*	Error_History[0].Speed	1272.000	rpm	
4*	Error_History[0].Current	-7.600	Ap	
5*	Error_History[0].Temperature	25	degree	
6*	Error_History[0].Mode	1	DEC	
7*	Error_History[0].time	11134.950	Min	
8*	Error_History[0].PWM_State	77	HEX	
9*	Error_History[1].Error	208	HEX	
10*	Error_History[1].DCBUS	297	U	
11*	Error_History[1].Speed	1680.000	rpm	
12*	Error_History[1].Current	-7.506	Ap	
13*	Error_History[1].Temperature	24	degree	
14*	Error_History[1].Mode	1	DEC	
15*	Error History[1].time	11135.400	Min	

5.4.11 Панель управления

Это меню используется для настройки и опроса всех параметров, которые, относятся к группе F000 to F007.

5.4.12 Initialize/Save

Это меню используется для сохранения и сброса параметров, а так же перезагрузке сервопривода.

Initialize/Save
Save control parameters
Save motor parameters
Initialize control parameters
Reboot driver

5.4.13 Свойства привода

Это меню используется для отображения такой информации, как модель привода, версии программного обеспечения, серийный номер и так далее.

😵 Driv	😨 Driver Property 📃 🖾				
	name	data	unit	<u>]</u>	
1*	Device_Type	20192	HEX		
2*	Device_Name	JD430 drive-fan	String		
3*	Product_Version	V100	ASCII		
4*	Software_Version	JD201212031450	String	_	
5*	Manufacturer	Kinco Electric (Shenzhen) Ltd.	String	=	
6*	Serial_Num	J461100XX121330026	String		
7	ID_Com	1	DEC		
				Ŧ	
•		III	•	щ	

Глава 6 Выбор двигателя, Пробное включение и Список параметров

6.1 Конфигурация двигателя и привода

По умолчанию в приводе тип двигателя не установлен, поэтому пользователи должны установить модель двигателя перед использованием привода. Пожалуйста, обратитесь к таблице выбора двигателя в разделе 6.1.1 при установке модели двигателя.

6.1.1 Таблица выбора двигателя для сервопривода JD

PC	LED	Молони приготоня		Подходящ	ий привод			
Software	Display	Модель двигателя	JD430	JD630	JD620	JD640		
Ka 404 h Ha		la дисплее FFF.F если не включить						
R	404.0	На дисплее 800.0 если включить	· · · · · · · · · · · · · · · · · · ·					
E0	304.5	SME60S-0020-30A∎K-3LK□	V					
E1	314.5	SME60S-0040-30A ■ K-3LK□	√					
E2	324.5	SME80S-0075-30A ■ K-3LK□						
K0	304.b	SMH60S-0020-30A∎K-3LK□						
K1	314.b	SMH60S-0040-30A∎K-3LK□						
K2	324.b	SMH80S-0075-30A∎K-3LK□						
K3	334.b	SMH80S-0100-30A∎K-3LK□	\checkmark					
K4	344.b	SMH110D-0105-20A∎K-4LK□						
K5	354.b	SMH110D-0125-30A∎K-4LK□						
K6	364.b	SMH110D-0126-20A∎K-4LK□						
K7	374.b	SMH110D-0126-30A■K-4HK□						
K8	384.b	SMH110D-0157-30A∎K-4HK□						
K9	394.b	SMH110D-0188-30A∎K-4HK□						
KB	424.b	SMH130D-0105-20A∎K-4HK□						
KC	434.b	SMH130D-0157-20A∎K-4HK□						
KD	444.b	SMH130D-0210-20A∎K-4HK□						
KE	454.b	SMH150D-0230-20A∎K-4HK□						
KF	464.b	SMH150D-0300-20A∎K-4HK□			\checkmark			
KG	474.b	SMH150D-0380-20A∎K-4HK□						
KH	484.b	SMH180D-0350-20A∎K-4HK□			\checkmark			
KI	494.b	SMH180D-0440-20A∎K-4HK□						
Примечание:	=А:без тор	моза □= Н: Пр	ямое кабельн	юе соединение				
=В: с тормозом = N		эзом = N: HF	О Стандартн	ый разъём				
	p	= C: YL	22 Стандарти	ный разъём				
√: рекоменл	іvемая конd	игурация = M: 2*M	И17 Стандарт	гный разъём				
V P	•••••••	= D: M17	'+M23 (Сило	вой разъём М2.	3. Разъём енко	одера М17)		

6.1.2 Порядок выбора двигателя

Если в приводе не установлен тип двигателя, то появится ошибка FFF.F или 800,0. Есть два способа, чтобы установить тип двигателя в привод следующим образом:

1. Панель оператора.

Правильно настройте модель двигателя перед перезапуском. Если вы хотите сбросить модель двигателя, установите D4.19= 303,0 (Нажмите клавишу Enter для подтверждения), а затем d4.00= 1 (Сохранить параметры двигателя), после перезагрузки сервопривода произойдёт сброс параметров модели двигателя.

2. Программное обеспечение

Подключите сервопривод к компьютеру, откройте приложение, затем Menu — Driver—Control Panel—F004, в группе параметров F004 настройте параметр 19: Motor Num (обратитесь к таблице моделей двигателей, после этого нажмите Enter, чтобы подтвердить, перезагрузите сервопривод.

Правильно настройте модель двигателя перед перезапуском. Если вы хотите сбросить модель двигателя, установите D4.19 (Мотор Num в F004) на 00 (Нажмите клавишу Enter для подтверждения), затем откройте Initialize/Save и нажмите Save motor parameters. После перезагрузки сервопривода произойдёт сброс параметров модели двигателя.

6.2 Пробный запуск и описание параметров

6.2.1 Цель пробного запуска

Пробный запуск позволяет вам протестировать устойчивость работы сервоусилителя и мотора.

6.2.2 Меры предосторожности

- 1. Убедитесь, что мотор не подключен к нагрузке. Если фланец мотора закреплен на механизме, убедитесь, что вал мотора не подсоединен к чему-либо.
- 2. Убедитесь, что кабели мотора, энкодера и силовые кабели подключены правильно. Подробнее см Главу 3.
- 3. В течение пробного запуска, длительное нажатие ▲ или ▼ при работающем моторе, импульсные сигналы, входные дискретные сигналы, и аналоговые сигналы от внешнего контроллера временно игнорируются, так что следует самостоятельно следить за безопасностью работы.
- 4. В течение пробного запуска система автоматически принимает режим мгновенного старта с заданной скоростью, который обозначается как "-3" режим.
- 5. После пробного запуска, выход из группы F006 осуществляется автоматически. Для того, чтобы войти в группу F006 снова, вы должны заново активировать пробный запуск.
- 6. Если кабели мотора или энкодера подключены неправильно, текущая скорость вращения мотора может оказаться максимально допустимой скоростью вращения, или фактическая скорость равна 0, а текущее значение показывает максимальную скорость. В этом случае убедитесь в отсутствии залипаний кнопок; затем проверьте кабельные соединения и осуществите пробный запуск снова.

6.2.3 Последовательность действий

- Нажимая кнопку MODE, выбрать группу параметров настройки мотора F0004 и нажать ENTER.

- Нажимая кнопки "Вверх" и "Вниз", выбрать номер параметра d4.01 и нажать ENTER.

- Изменить значение параметра на код нужного типа двигателя и сохранить его стандартным образом (нажав на ENTER и убедившись, что загорелась крайняя справа точка, длительно нажать MODE, чтобы выйти из режима изменения значения параметра).

- Нажав кнопку "Вниз", выбрать номер параметра d4.00 и нажать ENTER.

- Изменить значение параметра с 0000 на 0001, нажать ENTER, после этого временно загорится

крайняя справа точка и через несколько секунд погаснет.

- Перезагрузить сервоусилитель (выключить, а затем включить питание 24В).

- 1. Нажмите **MODE** для входа в группу F004. Выберите параметр "d4.18", и проверьте тип мотора.
- 2. Нажмите **MODE** для входа в группу F000. Выберите параметр "d0.02", и установите конечную скорость в "SpeedDemand_RPM".
- 3. Нажмите **MODE** для входа в группу F006. Проведите проверку кнопок следующим образом. Откройте параметр d6.40. Сначала нажмите ▼ для изменения его на d6.31. Затем нажмите ▼, параметр автоматически изменится на "d6.15". Наконец, нажмите ▲ для изменения параметра на d6.25.
- 4. Нажмите ENTER для активации пробного запуска. При этом на дисплее отобразится "adc.d", и вал мотора начнет вращаться. При длительном нажатии ▲ или ▼, мотор автоматически блокируется и запускается в соответствии с параметром "+SpeedDemand_RPM" или "-SpeedDemand_RPM" по отдельности. При пробном запуске на дисплее отображается текущая реальная скорость вращения.

6.2.4 Схема пробного запуска

6.3 Описание параметров

Группа F000 представляет группу инструкций и параметры в этой группе не могут быть сохранены.

Параметр d4.00 используется для сохранения параметров мотора, установленных в группе F004. Учтите, что эта группа параметров должна быть установлена, если заказчик использует моторы стороннего производителя, для моторов Kinco установка этих параметров не требуется. d2.00, d3.00 и d.5.00 представляют один и тот же параметр, который используется для сохранения всех установленных параметров в данных группах.

Перечень параметров: Группа F000 (уставки команд)

Номер	Внутренний	Имя переменной	Значения	Исходн.	Диапазон
параметра	адрес			знач.	
d0.00	60600008	Operation_Mode	0.004 (-4): Импульсный режим управления, включая импульс/направление (P/D) и режим двойного импульса (CW/CCW). 0.003 (-3): режим контроля скорости с мгновенным стартом с заданной скоростью 0001 (1): режим работы по сконфигурированным перемещениям 0003 (3): режим контроля скорости с ускорением/торможением 0004 (4): режим контроля момента Примечание: Применим только в режиме работы, когда нет внешних сигналов управления сервоприводом.	-4	N/A

			Kinco	Automa	tion
d0.01	2FF00508	Control_Word_Easy	000.0: Запуск мотора 000.1: Останов мотора 001.0: Сброс ошибок Примечание: Применимо только в ситуации, когда включение мотора или сброс ошибок не осуществляется внешним контроллером. После сброса ошибки, мотор может быть запущен снова.	0	N/A
d0.02	2FF00910	SpeedDemand_RPM	Устанавливает конечную скорость вращения, при работе в режимах "-3" или "3" и при установке параметра d3.28 в значение 0 (без внешнего аналогового управления).	0	N/A
d0.03	60710010	CMD_q	Задает конечный момент, при работе в режиме "4" и при установке параметра d3.30 в значение 0 (без внешнего аналогового управления).	0	-2047~2047
d0.04	2FF00A10	Vc_Loop_BW	Устанавливает полосу пропускания контура регулирования скорости. Единицы измерения герцы. Эта переменная может быть установлена только после того, как будет выполнена автонастройка; иначе фактическая полоса пропускания будет неправильной, что вызовет неправильную работу сервоусилителя. Если результат автонастройки некорректен, установка этого параметра может также повлечь неправильную работу сервоусилителя. Примечание: Этот параметр не может быть установлен, если автонастройка недоступна. После установки этого параметра, используйте d2.00 для сохранения изменений.	0	0~600
d0.05	2FF00B10	Pc_Loop_BW	Устанавливает полосу пропускания контура регулирования позиции. Единицы измерения герцы. Примечание: После установки этого параметра используйте d2.00 для сохранения изменений.	0	N/A
d0.06	2FF00C10	Tuning_Start	Если переменная установлена в 11, запускается автонастройка. Все входные сигналы не отслеживаются при во время автонастройки. Переменная автоматически сбрасывается в ноль после завершения автонастройки. Установка значения отличного от 11, останавливает автонастройку.	0	N/A

Перечень параметров: группа F001 (уставки отображения данных)

Номер	Внутренний адрес	Имя переменной	Отображаемый параметр
параметра			
d1.00	2FF00F20	Soft_Version_LED	Версия прошивки дисплея
d1.01	2FF70020	Time_Driver	Общее время работы сервоусилителя (S)
d1.02	2FF01008	Motor_IIt_Rate	Отношение текущего установленного значения защиты по перегреву мотора к максимальному
d1.03	60F61210	Motor_IIt_Real	Фактические данные мотора защиты от перегрева
d1.04	2FF01108	Driver_IIt_Rate	Отношение текущего установленного значения защиты по перегреву драйвера к максимальному
d1.05	60F61010	Driver_IIt_Real	Фактические данные сервоусилителя защиты от перегрева
d1.06	2FF01208	Chop_Power_Rate	Отношение текущего значения мощности тормозного резистора к его базовой мощности
d1.07	60F70D10	Chop_Power_Real	Текущее значение мощности тормозного резистора
d1.08	60F70B10	Temp_Device	Температура сервоусилителя (°С)
d1.09	60790010	Real_DCBUS	Текущее напряжение на DC шине
d1.10	60F70C10	Ripple_DCBUS	Колебания напряжения на DC шине
d1.11	60FD0010	Din_Status	Состояние входного порта
d1.12	20101410	Dout_Status	Состояние выходного порта
d1.13	25020F10	Analog1_out	Отфильтрованное значение внешнего аналогового сигнала 1
d1.14	25021010	Analog2_out	Отфильтрованное значение внешнего аналогового сигнала 1
d1.15	26010010	Error State	Ошибка состояния
d1.16	26020010	Error_State2	Ошибка состояния слова 2
d1.17	60410010	Status_Word	Статус сервоусилителя Бит0: Готов к включению Бит1: Включить Бит2: Операция включения Бит3: Ошибка Бит4: Напряжение отключено Бит5: Быстрый останов Бит5: Быстрый останов Бит6: Отключить Бит7: Внимание Бит7: Внимание Бит8: Зарезервировано Бит9: Зарезервировано Бит10: Сигнал достижения Бит11: Внутренний предел активен Бит12: Step.Ach / V = 0/Hom.att.

			Бит13: Foll.Err / Res.Hom.Err. Бит14: Соединение установлено Бит15: Ссылка найдена		
d1.18	60610008	Operation_Mode_Buff	Эффективный режима работы сервоусилителя		
d1.19	60630020	Pos_Actual	Текущая позиция мотора		
d1.20	60FB0820	Pos_Error	Ошибка позиционирования		
d1.21	25080420	Gear_Master	Счетчик импульсов на входе в электронный редуктор		
d1.22	25080520	Gear_Slave	Счетчик импульсов на выходе из электронного редуктора		
d1.23	25080C10	Master_Speed	Частота импульсов ведущей оси (имп/мс)		
d1.24	25080D10	Slave_Speed	Частота импульсов ведомой оси (имп/мс)		
d1.25	606C0010	Real_Speed_RPM	Текущая скорость (rpm) Время опроса: 200мс		
d1.26	60F919	Real_Speed_RPM2	Текущая скорость (0.01 грм) Время опроса: 200мс		
d1.27	60F91A10	Speed_1mS	Данные скорости (inc/1 mS) Время опрса: 1мс		
d1.28	60F60C10	CMD_q_Buff	Внутренний действующий ток		
d1.29	60F61710	I_q	Фактический ток Формула преобразования между значением индикатора и фактического тока: $I_{\rm rms} = \frac{I - q}{2047} * \frac{I_{\rm peak}}{\sqrt{2}}$		
			I _{peak} это максимальное пиковое значение выходного тока		
d1.30	60F90E10	K_Load	Параметр нагрузки		
d1.31	30100420	Z_Capture_Pos	Положение вала по индексным сигналам с энкодера		

Перечень параметров: группа F002 (уставки регуляторов)

Номер	Внутренний	Имя	Пояснение	Исходн.	Диапазо
параметра	адрес	переменной		значен.	н
d2.00	2FF00108	Store_Loop_ Data	 Сохраняет все изменения, кроме уставок мотора Сброс всех изменений, кроме уставок мотора 	0	N/A
d2.01	60F90110	Кур	Уст. скорости отклика контура скорости	100	0~32767
d2.02	60F90210	Kvi	Время для регулировки скорости с компесацией незначительных ошибок	2	0~16384
d2.03	60F90308	Notch_N	Установка частоты режекторного фильтра для регулятора скорости, для устранения механического резонанса при подключении мотора к нагрузке. Вычисляется по формуле F=Notch_N*10+100. Например, если частота механического резонанса F = 500Гц, параметр должен быть установлен в 40.	45	0~90
d2.04	60F90408	Notch_On	Включение или отключение режекторного фильтр 0: Отключить фильтр 1: Включить фильтр	0	N/A
d2.05	60F90508	Speed_Fb_N	Вы можете уменьшить шум работы мотора уменьшением полосы пропускания обратной связи контура регулирования скорости. Когда полоса пропускания уменьшается, скорость отклика мотора также уменьшается. Вычисляется по формуле F=Speed_Fb_N*20+100. Например, чтобы установить полосу пропускания в "F = 500Гц", вы должны установить параметр в 20.	45	0~45
d2.06	60F90608	Speed_Mode	 0: Текущая скорость после фильтра нижних частот. Скорость отклика после прохождения через фильтр нижних частот. 1: Текущая скорость без фильтрации 2: Обратная связь по выходу обратной связи 	0	N/A
d2.07	60FB0110	Крр	Пропорциональное усиление регулятора положения Крр	1000	0~16384
d2.08	60FB0210	K_Speed_FF	0 показывает отсутствие прямой связи по скорости, 256 показывает 100% прямой связи	256	0~256

d2.09	60FB0310	K_Acc_FF	Параметр обратно пропорционален	7FF.F	32767~1
10.10			параметру прямои связи по скорости	0.10	0
d2.10	2FF00610	Profile_Acce_ 16	Установка трапецеидальнои формы графика ускорения (rps/s) в "3" и "1" режимах	610	0~2000
d2.11	2FF00710	Profile_Dece_	Установка трапецеидальной формы графика	610	0~2000
		16	торможения (rps/s) в "3" и "1" режимах		
d2.12	60F60110	Кср	Коэффициент пропорциональности	N/A	N/A
			регулятора тока, этот параметр не требует		
			настройки		
d2.13	60F60210	Kci	Постоянная времени интегрирования	N/A	N/A
			регулятора тока		
d2.14	60730010	CMD_q_Max	Задание для регулятора тока	N/A	N/A
d2.15	60F60310	Speed_Limit_	Уставка ограничения максимальной скорости	10	0~1000
		Factor	в режиме контроля момента		
			$\begin{bmatrix} F & = F & & & & & & \\ Actual torque & Set torque & & & & \\ F & = F & -N^*(V & -V &) & & & & \\ Actual torque & Set torque & & & & & \\ Actual torque & Set torque & & & & & \\ Actual speed & Maximum speed & & & & & \\ \end{array}$		
			где V – это максимальная скорость, заданная		
			в d2.24 Max_Speed_RPM		
d2.16	607E0008	Invert Dir	Реверс направления вращения	0	N/A
		_	0: Против часовой стрелки		
			1: По часовой стрелке		
d2.17	60F90E10	K_Load	Отображает коэффициент нагрузки	N/A	20~1500
					0
d2.18	60F90B10	Kd_Virtual	Показывает постоянную времени	1000	0~32767
			дифференцирования kd отслеживателей		
d2.19	60F90C10	Kp_Virtual	Показывает коэффициент	1000	0~32767
			пропорциональности kp отслеживателей		
d2.20	60F90D10	Ki_Virtual	Показывает постоянную времени	0	0~16384
			интегрирования ki отслеживаетелей		
d2.21	60F91010	Sine_Amplitude	Увеличение этого параметра уменьшает	64	0~1000
			погрешность настройки, но вибрация		
			привода станет более жесткой.		
			Этот параметр может быть		
			отрегулирован в соответствии с реальными		
			параметрами приводимого механизма. Если		
			данный параметр слишком мал, увеличится		
			ошибка автонастройки, или автонастройка		
			станет невозможна.		
d2.22	60F91110	Tuning_Scale	Уменьшение параметра уменьшает время	128	0~16384
			автонастройки, но результат автонастройки		
			может оказаться некорректным.		
d2.23	60F91210	Tuning_Filter	Параметры фильтрации при автонастройке.	64	1~1000
d2.24	60800010	Max_Speed_	Ограничение максимальной скорости	5000	0~6000
		RPM	вращения.		

d2.25	2FF00E10	Max_Following_ Error_16	Max_Following_Error= 100*Max_Following_Error_16	100	/
d2.26	60FB0510	Pos_Filter_N	Средний фильтр параметров	1	/

Перечень параметров: группа F003 (настройка входов/выходов и шаблонов операций)

Номер	Внутренний	Имя переменной	Пояснение	Исходн.	Диапазон
параметра	адрес			значен.	
d3.00	2FF00108	Store_Loop_Data	1: Сохраняет все изменения, кроме	0	N/A
			уставок мотора		
			10: Сброс всех изменений, кроме		
			уставок мотора		
d3.01	20100310	Din1_Function	000.0: Без функции	000.1	N/A
d3.02	20100410	Din2_Function	000.1: Включить привод	000.2	N/A
d3.03	20100510	Din3_Function	000.2: Соросить ошиоку	000.4	N/A
d3.04	20100610	Din4_Function	000.4. Высор режима рассты	8.000	N/A
d3.05	20100710	Din5_Function	для регулятора скорости	001.0	N/A
d3.06	20100810	Din6_Function	001.0: Первый концевой выключатель	002.0	N/A
d3.07	20100910	Din7_Function	002.0: Второй концевой выключатель	004.0	N/A
			004.0: Сигнал нулевой позиции		
			008.0: Реверс вращения		
			010.0: Пользовательская уставка		
			контроля скорости 1		
			800.1: Пользовательская уставка		
			контроля скорости 2		
			040.0: Пользовательская уставка		
			контроля положения ()		
			080.0: Пользовательская уставка		
			контроля положения 1		
			800.2: Пользовательская уставка		
			контроля положения 2		
			801.0: Multi Din 2		
			802.0: Выбор коэффициента усиления 0		
			804.0: Выбор коэффициента усиления Т		
10.00	00400440	Dia Dala 11		0	N1/A
d3.08	20100110	Dio_Polarity	инверсия входов/выходов	0	IN/A
d3.09	26600810	Dio_Simulate	имитация входных сигналов, и	U	N/A
			включение выходных сигналов		

			Kinco [®] A	utomat	ion
d3.10	2000008	Switch_On_Auto	Автоматически блокировать мотор,	0	N/A
			1: Ла		
d3 11	20100F10	Dout1 Function	000.0: Без фукции	000 1	N/A
d3.12	20101010	Dout? Function	000.1: Готов	000.2	N/A
d3 13	20101010	Dout3 Function	000.2: Ошибка	000.2	N/A
d3 14	20101210	Dout4 Function	000.4: Позиция достигнута	000.8	N/A
d3 15	20101310	Dout5 Function	000.8: Нулевая скорость	001.0	N/A
40.10	20101010	boute_r unouon	001.0. Тормоз включен	001.0	
			004.0: Инлексная точка пройлена		
			008.0: Достигнута максимальная		
			скорость в режиме контроля момента		
			010.0: ШИМ в работе		
			020.0: Ограничение положения		
			040.0: Ссылка найдена		
			080.0: Зарезервировано		
			100.0: Multi Dout 0		
			200.0: Multi Dout 1 400.0: Multi Dout 2		
d3.16	20200D08	Din_Mode0	Этот режим выбирается, когда сигнал	-4	N/A
			отсутствует (d3.03=000.4)		
d3.17	20200E08	Din_Mode1	Этот режим выбирается, когда сигнал	-3	N/A
			присутствует (d3.03=000.4)		
d3.18	20200910	Din_Speed0_RPM	Выбор установленной скорости: 0 [rpm]	0	N/A
d3.19	20200A10	Din_Speed1_RPM	Выбор установленной скорости: 1 [rpm]	0	N/A
d3.20	20200B10	Din_Speed2_RPM	Выбор установленной скорости: 2 [rpm]	0	N/A
d3.21	20200C10	Din_Speed3_RPM	Выбор установленной скорости: 3 [rpm]	0	N/A
d3.22	25020110	Analog1_Filter	Сглаживание входного аналогового	5	1~127
			сигнала 1		
			F (Filter Frequency) = 4000/ ($2\pi^*$		
			Analog1_Filter)		
			T (Time Constant) = Analog1_Filter/4000		
			(S)		
d3.23	25020210	Analog1_Dead	Зона нечувствительности для	0	0~8192
			аналогового сигнала 1		
d3.24	25020310	Analog1_Offset	Смещение для аналогового сигнала 1	0	-8192~81
10.05	05000440				92
03.25	25020410	Analog2_Filter	сглаживание входного аналогового	5	1~127
			Filter frequency: $f=4000/(2\pi^*)$		
			Analog'I_Filter)		
			Time Constant: $I = Analog1_Fliter/4000$		
			(5)		

Сервопривода серии JD

				uloma	lion
d3.26	25020510	Analog2_Dead	Зона нечувствительности для	0	0~8192
42.07	25020610	Analog2 Offect		0	9102~91
u3.27	23020010	Analog2_Offset	Смещение для аналогового сигнала 2	0	-8192~81 92
d3.28	25020708	Analog_Speed_	Выбор каналов аналогового задания	0	N/A
		Con	скорости		
			0: Отключить каналы для скорости		
			1: Канал 1 (AIN1)		
			2: Канал 2 (AIN2)		
			Действительно для режимов 3,- 3 и 1		
d3.29	25020A10	Analog_Speed_	Пропорция между входным сигналом и	1000	N/A
		Factor	выходной скоростью		
d3.30	25020808	Analog_Torque_	Выбор каналов задания момента	0	N/A
		Con	0: Отключить каналы для момента		
			1: Канал 1 (AIN1)		
			2: Канал 2 (AIN2)		
			Действительно для режима 4		
d3.31	25020B10	Analog_Torque_	Пропорция между входным сигналом и	1000	N/A
		Factor	выходным моментом		
d3.32	25020908	Analog_MaxT_C	Контроль максимального момента	0	N/A
		on			
			1: Макс. момент задается через AIN 1		
10.00	05000040		2: Макс. Момент задается через AIN 2	0.400	N1/A
d3.33	25020C10	Analog_Max1_F	Максимально допустимыи момент,	8192	N/A
-10.04	05000440		задаваемый через аналоговый сигнал	4000	00707 0
03.34	25080110	Gear_Factor	числитель электронного редуктора для	1000	-32/0/~3
42.25	25080210	Coor Dividor		1000	2/0/
u3.33	23000210	Geal_Divider		1000	1-32707
43.36	25080308		0. Режим управления леойным	1	N/A
45.50	20000000		импульсом (СW/ССW)		
			1 Режим шаг-направление (P/D)		
			2 Инкрементальный энколер		
			10. CW/CCW(RS422 type)		
			11Pulse/Direction(RS422 type)		
			12 Incremental encoder (RS422 type)		
d3.37	25080610	PD Filter	Сглаживание входных импульсов.	3	1~32767
		_	Filter frequency: f=1000/(2π* PD_Filter)		
			Time constant: T = PD_Filter/1000		
			Ед. измерения: сек		
			Примечание: Если настраивать этот		
			параметр в течение работы, некоторые		
			импульсы могут быть пропущены.		
d3.38	25080810	Frequency_Check	Показывает предел частоты импульсов (кГц)	600	0~600

			Kinco [®] A	utomat	ion
d3.39	25080910	PD_ReachT	Показывает время достижения заданной позиции в импульсном режиме Ед. изм: мс	10	0~32767
d3.40	2FF10108	Din_Position_ Select_L	Выбор устанавливаемого параметра. 0. Din_Pos0 1. Din_Pos1 2. Din_Pos2 3. Din_Pos3 4. Din_Pos4 5. Din_Pos5 6. Din_Pos6 7. Din_Pos7	0	N/A
d3.41	2FF10210	Din_Position_M	Как в d3.42	0	-32767~3 2767
d3.42	2FF10310	Din_Position_N	Внутреннее положение устанавливается в Din_Position_Select_L Din_Pos = Din_Position_M * 10000 + Din_Position_N	0	-32767~3 2767
d3.43	20200F10	Din_Control_Word	Input "Enable" signal controls the control word.	0	N/A
d3.44	20201810	Din_Speed4_RPM	Контроль скорости: 4 [rpm]	0	N/A
d3.45	20201910	Din_Speed5_RPM	Контроль скорости: 5 [rpm]	0	N/A
d3.46	20201A10	Din_Speed6_RPM	Контроль скорости: 6 [rpm]	0	N/A
d3.47	20201B10	Din_Speed7_RPM	Контроль скорости: 7 [rpm]	0	N/A

Перечень параметров: Группа F004 (уставки мотора)

Численное	Внутрен-	Имя переменной	Значение	
значение	ний			
	адрес			
d4.00	2FF00308	Store_Motor_Data	1: Сохраняет параметры мотора	
d4.01	64100110	Motor_Num	Номер хост-компьютера (ASCII код, шестнадцатеричное	
			значение)	
			"00"	
			Примечание: для изменения этого параметра необходимо	
			сохранить его с адресом "d4.00" и перезагрузить.	
d4.02	64100208	Feedback_Type	Тип энкодеров	
			001.1: Дифференциальные сигналы ABZ и UVW	
			001.0: Дифференциальные ABZ сигналы и TTL сигналы UVW	
			000.1: TTL сигналы ABZ и дифференциальные сигналы UVW	
			000.0: TTL сигналы ABZ и UVW	
d4.03	64100508	Motor_Poles	Число пар полюсов мотора	
			[2p]	
d4.04	64100608	Commu_Mode	Режим поиск возбуждения	
d4.05	64100710	Commu_Curr	Поиск тока возбуждения	
			[dec]	

				Kir	nco [®] Automation	
d4.06	64100810	Commu_Delay	Задержка поиска в	озбуждения		
			[мс]			
d4.07	64100910	Motor_IIt_I	Показывает текущи	ие параметры за	щиты двигателя от перегрева	
			Ir[Arms]*1.414*10			
d4.08	64100A10	Motor_IIt_Filter	Установки времени	и срабатывания :	защиты мотора от перегрева	
			Время: N*256/1000	Единица: сек		
d4.09	64100B10	Imax_Motor	Отображает макси	мальный пиковь	ый ток моторов	
			I[Apeak]*10			
d4.10	64100C10	L_Motor	Показывает фазну	ю индуктивности	ь моторов	
			L[mH]*10			
d4.11	64100D08	R_Motor	Показывает фазно	е сопротивлени	е моторов	
			R[Ω]*10			
d4.12	64100E10	Ke_Motor	Обратная электрод	цвижущая сила м	иоторов	
14.40	04400540		Ke[vp/krpm]^10			
04.13	64100F10	Kt_Motor	Коэффициент мом	ента моторов		
d4 14	64101010	Ir Motor	Kunii/Amisj 100	TODOD		
U4.14	04101010		Ir[kam^2]*1 000 000			
d4 15	64101110	Brake Duty Cycle				
		Brano_Baty_0yolo	0~2500[0100%]		(TOPMOOD	
d4.16	64101210	Brake Delay	Время задержки ш	кивных тормозо	В	
		/	Значение по умолч	анию: 150 мс		
d4.17	64101308	Invert_Dir_Motor	Направление враш	цения моторов		
d4.18	64101610	Motor_Using				
			Программа ПК	Дисплей	Модель	
			"K0"	304.B	SMH60S-0020-30	
			"K1"	314.B	SMH60S-0040-30	
			"K2"	324.B	SMH80S-0075-30	
			"K3"	334.B	SMH80S-0100-30	
			"K4"	344.B	SMH110D-0105-20	
			"K5"	354.B	SMH110D-0125-30	
			"K6"	364.B	SMH110D-0126-20	
			"K7"	374.B	SMH110D-0126-30	
			"K8" "IZO"	384.B 204 P	SMH110D-0157-30	
			"SO"	394.D 305 3	130D 0105 200 AK 21 S	
			"S1"		130D_0157_20AAK-2L3	
			"S2"	325.3	130D-0157-1544K-2LS	
			"S3"		130D-0200-20AAK-2HS	
			"S4"		130D-0235-15AAK-2HS	
			"F8"		85S-0045-05AAK-FLFN	

Перечень параметров: Группа F005 (уставки привода)

Числен	Внутрен	Имя переменной	Значение	Значени
ное	ний			е по
значени	адрес			умолчан
е				ию
d5.00	2FF00108	Store_Loop_Data	1: Сохраняет все параметры настроек за	0
			исключением моторов	
			10: Сброс всех настроек за	
			исключением моторов	
d5.01	100B0008	ID_Com	Номер привода на станции	1
			Примечание: для изменения этого параметра	
			необходимо сохранить его с адресом "d5.00" и	
			перезагрузить.	
d5.02	2FE00010	RS232_Bandrate	Устанавливает скорость передачи данных	270
			последовательного порта RS232	
			540 19200	
			270 38400	
			90 115200	
			Примечание: для изменения этого параметра	
			необходимо сохранить его с адресом "d5.00" и	
			перезагрузить.	
d5.03	2FE10010	U2BRG	Устанавливает скорость передачи данных	270
			последовательного порта $RS232$	
			270: 38400	
			90: 115200	
			Перезагрузка не требуется, но он не может	
			быть сохранен	
d5.04	60F70110	Chop_Resistor	Величины тормозных резисторов	0
d5.05	60F70210	Chop_Power_Rated	Номинальная мощность тормозного резистора	0
d5.06	60F70310	Chop_Filter	Временная постоянная тормозного резистора	60
			Time: N*256/1000 Unit: S	
d5.07	25010110	ADC_Shift_U	Конфигурация данных фазового сдвига U	N/A
d5.08	25010210	ADC_Shift_V	Конфигурация данных фазового сдвига V	N/A
d5.09	30000110	Voltage_200	Исходные данные АЦП при напряжении шины	N/A
			постоянного тока 200 В	
d5.10	30000210	Voltage_360	Исходные данные АЦП при напряжении шины	N/A
			постоянного тока 360 В	
d5.11	60F60610	Comm_Shift_UVW	Указатель возбуждения мотора	N/A
d5.12	26000010	Error_Mask	маски ошибок	FFF.F
d5.13	60F70510	RELAY_Time	время действия рэле при коротком замыкании	150
			конденсаторов	
			Unit: mS	
d5.14	2FF00408	Key_Address_F001	Устанавливает числовые данные дисплея	N/A

d5.15	65100B08	RS232_Loop_Enable	0:1 to 1	0
			1:1 to N	
d5.16	2FFD0010	RS485_Bandrate	Настройка скорости порта RS485 1080: 9600 540: 19200 270: 38400 90: 115200 Примечание: что бы изменить этот параметр, сохраните его с адресом "d5.00" и перезагрузите привод	540
d5.17	2F810008	CAN_Bandrate	Настройка скорости порта CAN 100: 1M 12: 125k 50: 500k 5: 50k 25: 250k 1: 10k Примечание: что бы изменить этот параметр, сохраните его с адресом "d5.00" и перезагрузите привод	50

Глава 7 Работа с каналами ввода/вывода

Сервопривод KINCO CD servo driver имеет 7 дискретных входов (дискретный вход может получать сигналы высокого или низкого уровня, в зависимости от того, какой тип сигналов был выбран не терминале COM) и 5 дискретных выходов (выходы OUT1-OUT4 могут выдавать в нагрузку до 100 мА тока, а порт OUT5 может выдавать в нагрузку да 800 мА, и к ним можно напрямую подключать внутреннее устройство шкивного тормоза). Вы можете свободно конфигурировать все функции дискретных входов/выходов в соответствии с требованиями вашего приложения.

7.1 Входные дискретные сигналы

7.1.1 Полярность входных дискретных сигналов

Таблица 7-1: Переменные упрощенной установки полярности сигналов ввода/вывода

Численное	Имя переменной	Значение	Значение по	Диапазон
значение			умолчанию	
d3.08	Dio_Polarity	Устанавливает полярность	0	N/A
		сипталов ввода/вывода		

Таблица 7-2 методы установки полярности дискретных входных сигналов

	1		
1	2	3	(4)
Выбор порта	Выбор	Зарезервировано	0: Порт ввода действителен, когда через порт не
ввода/вывода	канала		протекает ток, и порт вывода действителен, когда
0: Порт вывода	Ввод: 1-7		коммутатор открыт.
1: Порт ввода	Вывод: 1-5		1: Порт ввода действителен, когда через порт
			протекает ток, и порт вывода действителен, когда
			коммутатор закрыт.
			Прочее: проверьте текущий статус

Пример 7-1: Настройка полярности входного дискретного сигнала DIN1

1	2	3	4)				
Выбор порта	Выбор канала	Зарезервировано	0: D1N1 включен когда S1				
ввода/вывода	Установить 1 (выбран		разомкнут				
Установить 1	DIN 1)		1: D1N1 включен когда S1				
(выбранный порт ввода)			замкнут				

Таблица 7-3 Настройка полярности дискретного входа DIN1

Если d3.08 установлен на "110,0", это указывает, что DIN1 нормально закрыт. Если d3.08 установлен на "110,1", это указывает, что DIN1 нормально открыт.

Используйте программное обеспечение для ПК, чтобы изменить полярность

С помощью программного обеспечения PC для подключения JD сервопривода, откройте порт ввода / вывода. Зелёный светодиод под Polarity означает, что входы нормально открытые. Если изменить светодиоды DIN5 и DIN6 в красный, как показано на следующем рисунке, то DIN5 и DIN6, станут нормально закрытыми.

Рис.7-2 Цифровые входы/выходы в программном обеспечении

7.1.2 Эмуляция входных дискретных сигналов

Численное	Имя переменной	Значение	Значение по	Диапазон
значение			умолчанию	
d3.09	Dio_Simulate	Симулирует сигналы ввода и	0	N/A
		обеспечивает вывод сигналов вывода		

Dio_Simulate (Эмуляция ввода/вывода) предназначен для программной эмуляции входного сигнала. "1" означает, что сигнал активен, и "0" означает, что сигнал неактивен.

Таблица 7-5 Установки эмуляции дискретных входных сигналов

D D D D D D D D D D D D D D D D D D D					
1)	2	3	<u>(4)</u>		
Выбор порта ввода/вывода	Выбор	Зарезервировано	0: Сигнал ввода не эмулируется, и нет		
0: порт вывода	канала		принудительного вывода сигнала		
1: порт ввода	Ввод: 1-7		вывода		
	Вывод: 1-5		1: Эмулируется сигнал ввода, и		
			сигнал вывода принудительно		
			выводится		
			Прочее: Проверьте текущий статус		

Пример 7-2: Дискретный вход: DIN1

Таблица 7-6 Дискретный вход: DIN1

1	2	3	4)
Выбор порта	Выбор канала	Зарезервировано	0: Нет эмуляции DIN1
ввода/вывода	Установить 1 (выбран		1: Эмуляция DIN1
Установить 1	DIN1)		
(выбранный порт ввода)			

В частности, если в d3.09 установить "110.0", это значит, что сигнал ввода DIN1 не эмулируется; если в d3.09 установить "110.1", это значит, что эмулируется сигнал DIN1.

7.1.3 Индикация статуса входных дискретных сигналов

Таблица 7-7 Переменные индикации статуса дискретных входных сигналов

Численное значение	Имя переменной	Значение	
d1.11	Din_Status	Статус портов ввода	

Din_Status (шестнадцатеричное значение) используется для индикации статуса внешних сигналов ввода в реальном времени.

7.1.4 Адреса и функции входных дискретных сигналов

Таблица 7-8 Адреса и функции по умолчанию входных дискретных сигналов

Численное	Имя	Значение	Значение по умолчанию
значение	переменной		
d3.01	Din1_Function	000.0: Запретить	000.1 (Включить привод)
		000.1: Включить привод	
d3.02	Din2_Function	000.2: Сброс ошибок привода	000.2 (Сброс ошибок привода)
		000.4: Управление режимом работы	
d3.03	Din3 Function	контуром скорости	000.4 (Управление режимом
	_	001.0: Передний концевой выключатель	работы)
d3.04	Din4 Eunction	002.0: Задний концевой выключатель	
45.04		004.0: Сигнал перехода в исходное	
		положение	скорости)
d3 05	Din5 Function	008.0: Требование реверсирования	001 0 (Передний концевик)
40.00			
		010.0: Внутреннее управление скоростью 0	
d3.06	Din6_Function	020.0: Внутреннее управление скоростью 1	002.0 (Задний концевик)
		800.1: Внутреннее управление скоростью 2	
		040.0: Внутреннее управление	
d3.07	Din/_Function	положением 0	004.0 (Сигнал перехода в
		080.0: Внутреннее управление	исходное положение)
		ооо.2. Внутреннее управление	
		800 4 [·] Multi Din 0	
		800.8: Multi Din 1	
		801 0: Multi Din 2	
		802.0: Выбор коэффициента усиления 0	
		804.0: Выбор коэффициента усиления 1	
		100.0: Быстрый останов	
		200.0:Начать переход в исходное	
		положение	
		400.0:Активировать команду	

Примечание: DinX_Function (X в диапазоне от 1 до 7) используется для определения функции дискретных входов. Пользователь может свободно определять функции дискретных входов в соответствии с конкретными применениями.

Таблица 7-9 Значение определенных функций дискретных входов

Функция	Значение	
Запретить	Используется для отмены функции данного дискретного входа.	
Разрешить привод	По умолчанию, сигнал разрешить привод действителен, и вал двигателя	
	заблокирован.	
Сброс ошибок привода	Сигналы по переднему фронту действительны, и аварийные сигналы	
	очищаются.	
Управление режимом работы	Для переключения между двумя режимами работы.	
	Вы можете свободно определить режимы работы, соответствующие	
	присутствию и отсутствию сигнала, осуществив установки посредством	
	d3.16 Din_Mode0 (выберите 0 для режима работы) из Группы F003 и	
	Din_Mode1 (выберите 1 для режима работы) из Группы F003.	
Пропорциональное	Показывает управление над остановкой интеграции в контуре скорости.	
управление контуром	Управление применяется в том случае, когда происходит	
скорости	высокоскоростной системный останов, но превышение не ожидается.	
	Примечание: В режиме "-3", если сигнал действителен, образуются	
	фиксированные ошибки между действительной и заданной скоростью.	
Передний концевой	Показывает предел подачи вперед моторов (нормально закрытый	
выключатель	контакт по умолчанию).	
	По умолчанию, привод считает положительный предел положения	
	действительным: при использовании нормально открытых	
	переключателей полярность может быть изменена.	
Задний концевой	Показывает предел работы моторов в обратном направлении	
выключатель	(нормально закрытый контакт по умолчанию).	
	По умолчанию, привод считает отрицательный предел положения	
	действительным: при использовании нормально открытых	
	переключателей полярность может быть изменена.	
Сигнал перехода в исходное	Для выяснения исходного положения моторов.	
положение		
Требование реверсирования	Для реверсирования скорости задания в режиме скорости ("-3" или "3").	
скорости		
Внутреннее управление	Для управления заданными внутренними скоростями.	
скоростью 0	Примечание: Подробности см. в Разделе 7.5 Внутреннее	
Внутреннее управление	многоскоростное управление.	
скоростью 1		
Внутреннее управление		
скоростью 2		
Внутреннее управление	Для управления заданными внутренними положениями.	
положением 0	Примечание: Подробности см. в Разделе 7.4 Внутреннее управление	
Внутреннее управление	множественными положениями.	
положением 1		
Внутреннее управление		
положением 2		

Multi Din 0	Для переключения электронного редуктора
Multi Din 0	
Multi Din 0	
Gain switch 0	Для переключения нескольких параметров усиления (Р-усиление контура
Gain switch 1	скорости, і-усиления из контура скорости, п-усиления контура положения)
Быстрый останов	Когда сигнал действителен, вал двигателя освобождается.
	После прекращения сигнала привод следует разрешить заново.
Начать переход в исходное	При обнаружении переднего фронта сигнала начнет выполняться
положение	команда перехода в исходное положение.
Активировать команду	При обнаружении переднего фронта сигнала, будет активировано
	внутреннее управление положением

Пример 7-3: Настройка включения привода

Задача: Назначить функцию "включить привод" на включение по внешнему дискретному сигналу. В этом примере дискретный вход DIN1 назначается для функции "включить привод". В Таблице 7-12 показан метод настройки.

Численное значение Имя переменной		Установки параметров
d3.01	Din1_Function	Установить 000.1
d3.00	Store_Loop_Data	Установить 1

Таблица 7-10 Дискретный вход DIN1 назначается для функции "Разрешить привод"

Примечание: Любой дискретный вывод DIN1-7 может быть назначен в качестве функции "разрешить привод" установкой 000.1, то есть, bit 0 действителен.

Задача: Функция автовключения привода при подаче питания должна быть разрешена путем установки внутренних параметров в приводах вместо внешних дискретных сигналов. Метод настройки описан в Таблице 7-13.

Таблица 7-11 Разрешение функции автовключения привода путем установки внутренних параметров

		приводов
Номер параметра	Имя переменной	Установки параметров
d3.01- d3.07	DinX_Function	Ни один из дискретных портов ввода не должен быть
	(1~7)	установлен 000.1, то есть, функция разрешения не
		управляется ни одним из дискретных портов ввода.
d3.10	Switch_On_Auto	Установить 1
d3.00	Store_Loop_Data	Установить 1

Пользователи также могут использовать программное обеспечение для ПК, чтобы определить функции ввода / вывода. Откройте меню порта ввода / вывода, нажмите кнопку выделенную красным цветом, как показано на следующем рисунке, затем выберите требуемую функцию.

Function	Simula	te Polar	ity Real Virtual	
)IN1 driver enable	··· List			23
11N2 fault reset	E	ID	Item	_
		0001	driver enable	
IN3 operation mode	I D	0002	fault reset	
and the second second second		0004	operation mode	
IN4 P control		0008	P control	
		0010	positive limit	
IN5 positive limit	0	0020	negetive limit	
		0040	homing signal	
IN6 negetive limit		0080	reverse command	
		0100	internal speed 0	
IN7 homing signal	· 0	0200	internal speed 1	
		0400	internal position 0	
INS NULL		0800	internal position 1	
	_ 0	1000	quick stop	
Function		2000	Start homing	
pours ready		4000	active command	
Durif		8001	internal speed 2	
DOUT2 NULL		8002	internal position 2	
DOUT3 position reach	ed+vel			
DOUT4 zero velocity			OK Cancel	
DOUTS NULL				
DOUT6 motor brake	<u></u>		•	
DOUTZ error				

Рис.7-3 Установка функции цифрового ввода / вывода в программном обеспечении ПК

Пример 7-4: Запрет на отслеживание переднего/заднего концевого выключателя

При заводских настройках по умолчанию DIN5 на моторе – это передний концевой выключатель, а DIN6 - задний. При отсутствии концевых выключателей по положению для нормальной работы сервопривода эту функцию следует запретить. В Таблице 6-14 описан метод настройки.

Номер	Имя переменной	Установки параметров	
параметра			
d3.05	Din5_Function	Изменить значение по умолчанию 001.0 (передний	
		концевой выключатель) на 000.0	
d3.06	Din6_Function	Изменить значение по умолчанию 002.0 (задний концевой	
		выключатель) на 000.0	
d3.00	Store_Loop_Data	Установить 1	

Таблица 7-12: Запрет концевых выключателей

Пример 7-5: Управление режимом работы привода Кinco[®] Automation

Задача: Определяет входной порт DIN3 для установки управления режимами работы приводов; при ошибке DIN3 устанавливается режим работы "-4" (импульсный режим управления), а при действительном DIN3 устанавливается режим "-3" (режим мгновенной скорости). Таблица 7-15 описывает метод настройки.

Номер параметра	Имя переменной	Установки параметров
d3.03	Din3_Function	Установить 000.4
d3.16	Din_Mode0	Установить 0.004 (-4)
d3.17	Din_Mode1	Установить 0.003 (-3)
d3.00	Store_Loop_Data	Установить 1

таолица 7-то установки режимов управления приводов	Таблица 7-13 Установки	режимов	управления	приводом
--	------------------------	---------	------------	----------

Примечание: Если требуется, чтобы при включении питания привод работал в определенном режиме, необходимо настроить позицию переключения режимов, то есть, позицию "bit 2" необходимо установить в 1. После этого можно установить режимы работы, которые можно переключать при помощи адресов d3.16 или d3.37 группы F003.

7.1.5 Схема подключения входных дискретных сигналов

1. Подключения по схеме NPN (к контроллеру с управлением по низкому уровню входного сигнала)

Рисунок 7-4 Подключения по схеме NPN (к контроллеру с управлением по низкому уровню входного сигнала)

2. Подключения по схеме PNP (к контроллеру с управлением по высокому уровню входного сигнала)

Рисунок 7-5 Подключения по схеме PNP (контроллер с управлением по высокому уровню входного сигнала)

7.2 Выходные дискретные сигналы

7.2.1 Управление полярностью выходных дискретных сигналов

Габлица 7-14 Переменные	упрощенной установки	полярности вводов/выводов
· · · ·		

Номер	Имя	Описание	Значение по	Диапазон
параметра	переменной		умолчанию	
d3.08	Dio_Polarity	Устанавливает полярность	0	N/A
		вводов/выводов		

Dio_Polarity (упрощенная установка полярности вводов/выводов) используется для установки полярности действительных сигналов дискретных выходов. Число "1" обозначает нормально открытый, а "0" - нормально закрытый вывод.

Пример 7-6 Установка полярности для цифрового Вых1

7.2.1.1: Используйте панель, чтобы изменить полярность

Габлица 7-15	Установка	полярности	для цифрового	выхода OUT1
1				()

1	2	3	4
Выбор порта	Выбор канала	Зарезервировано	0: OUT1
вход/выход	Установите в 1		нормально закрытый
Установите в 0	(OUT1 выбран)		1: OUT1
(Выходной порт выбран)	· · · /		нормально открытый

Если d3.08 установлен на "010,0", это указывает, что OUT1 нормально закрытый. Если d3.08 установлен на "010,1", это указывает, что OUT1 нормально открыт.

7.2.1.2 Что бы изменить полярность с помощью программного обеспечения ПК, пожалуйста, обратитесь к 7.1.1.2.

7.2.2 Эмуляция выходных дискретных сигналов

Таолица 7-то переменные эмуляции вводов/выводов					
Номер	Имя	Описание	Значение по	Диапазон	
параметра	переменной		умолчанию		
d3.09	Dio_Simulate	Симулирует входные сигналы, при этом	0	N/A	
		выходные сигналы выводятся принудительно			

Таблица 7 16 Поромоции на омулянии вродов/ры водов

Dio_Simulate (эмуляция вводов/выводов) эмулирует вывод сигнала. Число "1" указывает, что выходной сигнал присутствует, а "0" - отсутствует.

7.2.3 Индикация статуса дискретных выходов

Таблица 7-17 Переменные для индикации состояния сигналов дискретных выходов

Номер параметра	Имя переменной	Описание
d1.12	Dout_Status	Статус порта вывода

Din_Status (шестнадцатеричное значение) показывает статус внешних выходных сигналов в реальном времени

7.2.4 Адреса и функции дискретных выходов

Таблица 7-18 Адреса и функции по умолчанию сигналов дискретных выходов

Numeric Display	Variable Name	Meaning	Значение по умолчанию
d3.11	Dout1_Function	000.0: Запретить 000.1: Готов 000.2: Ошибка 000.4: Положение достигнуто	000.1 (Готов)
d3.12	Dout2_Function	000.8: Нулевая скорость 001.0: Торможение мотора 002.0: Скорость достигнута	000.2 (Ошибка)
d3.13	Dout3_Function	о04.0: Индекс 008.0: Максимальный предел скорости 010.0: ШИМ ВКЛ.	000.4 (Положение достигнуто/Скорость достигнуто/Максимальный предел скорости)
d3.14	Dout4_Function	020.0: Ограничение мотора 040.0: Задание обнаружено 080.0: Зарезервировано 100.0: Multi Dout 0	000.8 (Нулевая скорость)
d3.15	Dout5_Function	200.0: Multi Dout 1 400.0: Multi Dout 2	001.0 (Торможение мотора)

DinX_Function (Х меняется от 1 до 5) используется для определения функций дискретных портов вывода. Пользователь может свободно определять функции дискретных выходов в соответствии с потребностями его приложения.

Таблица	7-19	Описания	функций,	опред	еляемых	выходными	дискре	тными	сигнала	ами
		•					H		••••••	•••••

Function	Описание		
Запретить	Запретить функционирование данного дискретного выхода		
Готов	Привод готов к функционированию.		
Ошибка	Выводятся аварийные сигналы, показывающие, что привод		
	неисправен.		
Положение достигнуто	В режиме импульсного управления "-4" данные о целевом		
	положении остаются неизменными во временном		
	интервале (d3.39) необходимом для достижения заданного		
	положения, и ошибки положения находятся в интервале		
	достижения заданного положения.		
Нулевая скорость	После разрешения мотора, этот сигнал выводится, когда		
	скорость мотора равна 0.		
Торможение мотора	Привод разрешает мотор и и вывод торможения становится		
	действительным.		
Скорость достигнута	В режимах внутреннего управления скоростью "-3" или "3"		
	сигналы выводятся после того, как будет достигнута		
	заданная скорость.		
Индекс	Вывод сигнала фазы Z (скорость не должна ыть слишком		
	высокой).		
Максимальный предел скорости	В режиме аналогового управления моментом "4" сигналы		
	выводятся после того, как будет достигнуто максимальное		
	ограничение на скорость.		
ШИМ ВКЛ.	Привод разрешает мотор.		
Ограничение мотора	Статус мотора - ограничение положения.		
Задание обнаружено	Переход в исходное состояние завершен.		

Пример 7-7: Назначение функции готовности

Задача: На дискретный выход 1 назначить функцию сигнализации готовности привода "Ready". Подробности установки см. в Таблице 7-23.

Номер параметра	Имя переменной	Установки параметров
d3.11	Dout1_Function	Установить 000.1
d3.00	Store_Loop_Data	Установить 1

Таблица 7-20: Установки готовности

7.2.5 Схема подключений дискретных выходов

1. Схема внутренних подключений дискретных выходов

Примечание: При использовании портов OUT3 или OUT4, необходимо также подключить порт COMO. При использовании порта OUT5 необходимо подключить порты 24VO и COMO к внешнему источнику питания.

71

2. Подключение по схеме NPN (подключения к контроллерам с управлением по низкому уровню входного сигнала) (OUT1-OUT7)

Рисунок 7-7 Подключение по схеме NPN (подключения к контроллерам с управлением по низкому уровню входного сигнала)

3. Подключение по схеме PNP (подключения к контроллерам с управлением по высокому уровню входного сигнала) (Только OUT1, OUT2 и OUT7 поддерживают эту схему подключения)

Рисунок 7-8 Подключение по схеме PNP (подключения к контроллерам с управлением по высокому уровню входного сигнала)
4. При подключении реле к дискретному выходу не забудьте о необходимости встречно-параллельного включения защитного диода, как показано на Рисунке 7-9:

Рисунок 7-9 Подключение реле к портам дискретного выхода (не забудьте о встречно-параллельно включенном диоде)

Глава 8 Режимы работы

8.1 Режим импульсного управления (режим "-4")

8.1.1 Схема подключений в режиме импульсного управления

1. Подключения в режиме импульсного управления

Рисунок 8-1 Подключения в режиме импульсного управления

2. Соединение с общим анодом (подключения к контроллерам с управлением по низкому уровню входного сигнала)

Рисунок 8-2 Соединение с общим анодом (подключения к контроллерам с управлением по низкому уровню входного сигнала)

3. Соединение с общим катодом (подключения к контроллерам с управлением по высокому уровню входного сигнала)

Рисунок 8-3 Соединение с общим катодом (подключения к контроллерам с управлением по высокому уровню входного сигнала)

8.1.2 Параметры режима импульсного управления

1. Параметры электронного редуктора

Таблица 8-1 Параметры электронного редуктора

Номер	Имя переменной	Описание	Значение по	Диапазон
параметра			умолчанию	
d3.34	Gear_Factor	Числитель	1000	-32767~32767
		электронного		
		редуктора в режиме		
		работы "-4"		
d3.35	Gear_Divider	Знаменатель	1000	1~32767
		электронного		
		редуктора в режиме		
		работы "-4"		

Параметры электронного редуктора используются для установки числителя и знаменателя электронного редуктора, когда привод работает в режиме "-4".

В частности, F2= $\frac{Gear_Factor}{Gear_Divider}$ * F1

При установке электронного редуктора 1:1, и поступает 10000 импульсов (разрешение энкодеров 2500 PPR, помноженное на четыре), то мотор поворачивается на один оборот. Если электронное передаточное число составляет 2:1, и поступает 10000 импульсов, то мотор поворачивается на два оборота.

75

	Multi Din 2 Multi Din 1 Multi Dir		0	Параметр	
Multi Din 2			Описание	Название	Адрес
0	0	0	Электронный	Gear_Factor 0	25080110
0	U	0	редуктор 0	Gear_Divider 0	25080210
0	0	1	Электронный	Gear_Factor 1	25090110
0	U	I	редуктор 1	Gear_Divider 1	25090210
0	1	0	Электронный	Gear_Factor 2	25090310
0	0 1	U	редуктор 2	Gear_Divider 2	25090410
0		1	Электронный	Gear_Factor 3	25090510
0	I		редуктор 3	Gear_Divider 3	25090610
1	0	0	Электронный	Gear_Factor 4	25090710
•	U		редуктор 4	Gear_Divider 4	25090810
1	0	1	Электронный	Gear_Factor 5	25090910
	0		редуктор 5	Gear_Divider 5	25090A10
4	4	0	Электронный	Gear_Factor 6	25090B10
	1	0	редуктор 6	Gear_Divider 6	25090C10
1 1	4	1	Электронный	Gear_Factor 7	25090D10
			редуктор 7	Gear_Divider 7	25090E10

С помощью функции Multi DinX можно назначить несколько электронных редукторов.

Значение по умолчанию Gear_Factor и Gear_Divider являются 1000.

2. Параметры выбора импульсного режима

Таблица 8-2 Параметры выбора импульсного режима

Номер	Имя	Описание	Значение по	Диапазон
параметра	переменной		умолчанию	
d3.36	PD_CW	0: Двухимпульсный режим (CW/CCW)	1	N/A
		1. Режим импульс/направление (P/D)		
		Примечание: Для изменения этого		
		параметра сохраните его через d3.00,		
		затем перезапустите.		

Примечание: Фазовые сигналы АВ не поддерживаются.

3. Параметры коэффициента фильтрации импульсов

Таблица 8-3 Параметры коэффициента фильтрации импульсов

Номер	Имя	Описание	Значение по	Диапазон
параметра	переменной		умолчанию	
d3.37	PD_Filter	Используется для сглаживания входных	3	1~32767
		импульсов.		
		Частота фильтра: f = 1000/(2π* PD_Filter)		
		Временная константа: Т = PD_Filter/1000		
		Единица измерения: S		
		Примечание: В случае изменения этого		
		параметра в процессе работы некоторые		
		импульсы могут быть потеряны.		

Когда привод работает в режиме импульсного управления, в случае установки чрезмерно высокого передаточного числа необходимо внести поправки в этот параметр для уменьшения колебаний мотора; тем не менее, при слишком большом значении этого параметра обработка инструкций управления будет происходить медленнее.

4. Параметры управления частотой импульсов

Таблица 8-4 Параметры управления частотой импульсов

	1-		<u> </u>	
Номер	Имя переменной	Описание	Значение по	Диапазон
параметра			умолчанию	
d3.38	Frequency_Check	Указывает ограничение по частоте	600	0~600
		входных импульсов (кГц)		

5. Параметры управления усилением контуров положения и скорости

Контуры тока относятся к параметрам мотора (оптимальные параметры для выбранного мотора устанавливаются приводом по умолчанию и поправка не требуется).

Параметры контуров скорости и положения необходимо настраивать в зависимости от условий нагружения.

При настройке контуров управления необходимо обеспечить полосу пропускания контура скорости по крайней мере вдвое больше, чем для контура положения, в противном случае могут возникнуть осцилляции.

Номер	Имя переменной	Описание	Значение по	Диапазон
параметра			умолчанию	
d2.07	Крр	Коэффициент пропорциональности	1000	0~16384
		контура положения, Крр		
d2.08	K_Velocity_FF	0 обозначает подачу вперед, и 256	256	0~256
		обозначает 100% подачу вперед		
d2.09	K_Acc_FF	Этот параметр обратно пропорционален	32767	32767~10
		подаче вперед		
d0.05	Pc_Loop_BW	Устанавливает полосу пропускания контура	0	1
		положения, в Герцах.		
d2.26	Pos_Filter_N	Средний фильтр параметров	1	/

Таблица 8-5 Параметры управления усилением контуров положения

Пропорциональный коэффициент усиления контура положения Крр: при увеличении пропорционального коэффициента усиления контура положения полоса пропускания контура положения улучшается, что приводит к уменьшению времени позиционирования и ошибки рассогласования. Тем не менее, слишком большая полоса пропускания может привести к возникновению шума и даже осцилляций. Поэтому этот параметр следует устанавливать в соответствии с условиями нагружения. В формуле Крр=103* Pc_Loop_BW, параметр Pc_Loop_BW обозначает полосу пропускания контура положения. Полоса пропускания контура положения меньше или равен полосе пропускания контура скорости. Рекомендуется устанавливать значение параметра Pc_Loop_BW менее, чем Vc_Loop_BW /4 (параметр Vc_Loop_BW обозначает полосу пропускания контура скорости).

Скорость подачи вперед контура положения K_Velocity_FF можно увеличить с целью уменьшения ошибка рассогласования по положению. Когда сигналы положения не гладкие, при уменьшении скорости подачи вперед контура положения осцилляции мотора во время работы могут быть уменьшены. Обратная связь контура положения по ускорению определяется параметром K_Acc_FF (не рекомендуется производить изменение этого параметра). Если требуется высокие значения коэффициентов усиления контуров положения, для улучшения производительности можно настроить параметр обратной связи по ускорению К_Acc_FF.

K Acc FF-	$I_p * K_t * Encoder _ R$
K_ACC_I'I' -	$250000*\sqrt{2}*J_{t}*\pi$

Примечание: Параметр K_Acc_FF обратно пропорционален ускорению при подаче вперед.

Таблица 8-6 Параметры управления усилением контуров скорости

Номер	Имя	Описание	Значение по	Диапазон
параметра	переменной		умолчанию	
d2.01	Кvр	Устанавливает время реакции контура скорости	100	0~32767
d2.02	Kvi	Настройка управления скорости, для	2	0~16384
		компенсации времени незначительных ошибок		
d2.05	Speed_Fb_N	Шум при работе мотора можно уменьшить путем	45	0~45
		уменьшения полосы обратной связи контуров		
		скорости (смягчая сигналы обратной связи		
		энкодеров). При уменьшении полосы реакция		
		мотора становится более медленной.		
		Используется следующая формула:		
		F=Speed_Fb_N*20+100.		
		Например, для установки полосы фильтра в "F =		
		500 Гц" необходимо установить значение этого		
		параметра 20.		

Пропорциональный коэффициент усиления контура скорости Кvp: при увеличении пропорционального коэффициента усиления контура скорости полоса чувствительности контура скорости также увеличивается. Полоса пропускания контура скорости прямо пропорциональна скорости реакции. При увеличении усиления контура скорости шумы мотора также возрастают. Если усиление слишком велико, могут возникнуть осцилляции системы.

Интегральный коэффициент усиления контура скорости Kvi: при увеличении интегрального коэффициента усиления контура скорости интенсивность низких частот улучшается и время поправки установившегося состояния уменьшается; тем не менее, при слишком большом усилении интегрального коэффициента могут возникнуть осцилляции системы.

С помощью функции Gain Switch0 и Gain Switch1 можно задать несколько коэффициентов усиления, как показано в следующей таблице.

Coin Switch 1	Cain Switch 0	077720077720	Параметр		
Gain Switch I	Gain Switch 0	Описание	Название	Адрес	
			Kvp of Gain 0	60F90110	
0	0	Gain 0	Kvi of Gain 0	60F90210	
			Kpp of Gain 0	60FB0110	
			Kvp of Gain 1	23400410	
0	1	Gain 1	Kvi of Gain 1	23400510	
			Kpp of Gain 1	23400610	

			Kvp of Gain 2	23400710
1	0	Gain 2	Kvi of Gain 2	23400810
			Kpp of Gain 2	23400910
			Kvp of Gain 3	23400A10
1	1	Gain 3	Kvi of Gain 3	23400B10
			Kpp of Gain 3	23400C10

Если DIN определён как фукция Gain Switch, то параметр PI_Switch будет отключен. Параметр "PI_Point"(60F92808) используется для отображения текущего усиления. Автоматическая настройка может быть использована только для установки Gain 0. Vc_Loop_BW и Pc_Loop_BW соответствует только Gain 0. Другие Gain необходимо установить пользуясь руководством.

"PI Switch" используется для переключения Gain 0 и Gain 1. В режимах -4; 3; и 1 будет использоваться Gain1, когда сигнал "Position reached" действителен, и использоваться Gain0, когда сигнал "Position reached" недействителен.

8.1.3 Примеры импульсного режима управления

В импульсном режиме управления выполните шаги, изложенные ниже, для конфигурирования привода:

Шаг 1: Определите, нужны ли внешние дискретные сигналы для включения привода. Для включения привода внешними дискретными сигналами см. Таблицу 7-12 в Примере 7-3. Если этого не требуется, отключите включение привода по внешним дискретным сигналам, см. Таблицу 7-13 в Примере 7-3, и включайте привод по его предустановленным параметрам.

Шаг 2: Определите, нужны ли конечные выключатели. По умолчанию, привод работает по конечным выключателям. В этом случае на дисплее отображается состояние конечных выключателей. Если вы не используете конечные выключатели, отключите эту функцию, как указано в Примере 7-4. Шаг 3: Задайте переключение режимов работы, как указано в Примере 7-5. Установки по умолчанию следующие: когда нет сигнала на входе DIN3, привод работает в режиме "-4" (импульсный режим). Шаг 4: После конфигурирования дискретных входов, нужно установить такие параметры, как тип импульсного режима и электронный редуктор.

Шаг 5: Сохраните параметры.

Пример 8-1: Режим импульсного управления "-4" – включение привода

через дискретный вход

Задача: DIN1 используется для разрешения драйвера, DIN2 используется для сброса ошибок, и DIN3 управляет режимами работы привода (режим "-4" устанавливается, когда нет сигнала на входе, и режим "-3" когда есть входной сигнал). Переключатели пределов отсутствуют. Форма импульсов импульс/направление, и электронное передаточное число составляет 2:1. В Таблице 7-7 описан метод настройки.

Таблица 8-7: Режим импульсного управления "-4" – включение привода через внешний дискретный вход

Номер	Имя переменной	Описание	Значение по умолчанию
параметра			
d3.01	Din1_Function	Определяет функции дискретного входа 1	000.1 (Разрешить привод)
d3.02	Din2_Function	Определяет функции дискретного входа 2	000.2 (Сброс ошибок)
d3.03	Din3_Function	Определяет функции дискретного входа 3	000.4 (управление режимом работы привола)
d3.05	Din5_Function	Определяет функции дискретного входа 5	Значение по умолчанию 001.0 изменяется в 000.0 (отрицательные пределы положения запрещены)
d3.06	Din6_Function	Определяет функции дискретного входа 6	Значение по умолчанию 002.0 изменяется в 000.0 (отрицательные пределы положения запрещены)
d3.16	Din_Mode0	Используйте этот режим работы когда входные сигналы неверные	Устанавливается 0.004 режим (-4) (режим импульсного регулирования)
d3.17	Din_Mode1	Используйте этот режим работы когда входные сигналы верные	Устанавливается 0.003 режим (-3) (режим мгновенной скорости)
d3.34	Gear_Factor	Указывает числитель для установки электронной передачи в режиме "-4" (режим импульсного регулирования)	Устанавливается 2000
d3.35	Gear_Divider	Указывает знаменатель для установки электронной передачи в режиме "-4" (режим импульсного регулирования)	Устанавливается 1000
d3.36	PD_CW	 0: Двухимпульсный (CW/CCW) режим 1. Режим полярности импульса (P/D) Примечание: Для изменения этого параметра необходимо сохранить его с адресом "d3.00" и перезагрузить. 	Значение по умолчанию 1 (полярность импульса)
d3.00	Store_Loop_Data	 Запись всех конфигурационных параметров контура управления Инициализация всех параметров контура управления 	Устанавливается 1

Пример 8-2 Режим импульсного управления "-4" – включение привода

автоматически после подачи питания

Задача: функция автовключения привода разрешена, DIN2 используется для сброса ошибок, и DIN3 управляет режимами работы привода (режим "-4" устанавливается, когда нет входного сигнала, а режим "3" – когда есть входной сигнал). Переключатели ограничителей недоступны. Форма импульсов – импульс/направление, и электронное передаточное число составляет 1:2. В Таблице 8-8 описан этот метод настройки.

Таблица 8-8 Режим импульсного регулирования "-4" – автоматический запуск привода после включения питания

Численное	Имя переменной	Значение	Установки параметров
значение			
d3.01-	DinX_Function	Определяет функции дискретных	Дискретные входы не могут
d3.07	(1~7)	входов 1-7	быть установлены 000.1. То
			есть, функция Enable не
			контролируется ни одним из
			дискретных входов.
d3.02	Din2_Function	Определяет функции дискретного	000.2 (Сброс ошибок)
		входа 2	
d3.03	Din3_Function	Определяет функции дискретного	000.4 (Управление режимами
		порта 3	работы привода)
d3.05	Din5_Function	Определяет функции дискретного	Значение по умолчанию 001.0
		входа 5	изменяется в 000.0
			(отрицательные пределы
			положения запрещены)
d3.06	Din6_Function	Определяет функции дискретного	Значение по умолчанию 002.0
		входа 6	изменяется в 000.0
			(отрицательные пределы
			положения запрещены)
d3.10	Switch_On_Auto	0: Нет управления	Устанавливается 1
		1:Автоматически блокирует мотор	
		при выключении питания привода	
d3.16	Din_Mode0	Этот режим работы выбирается,	Устанавливается 0.004 режим
		когда входные сигналы неверные	(-4)
			(режим импульсного
			регулирования)
d3.17	Din_Mode1	Этот режим работы выбирается	Устанавливается 0.003 режим
		когда входные сигналы верные	(-3)
			(режим мгновенной скорости)
d3.34	Gear_Factor	Указывает числитель для установки	Устанавливается 1000
		электронной передачи в режиме	
		"-4" (режим импульсного	
		регулирования)	

d3.35	Gear_Divider	Указывает знаменатель для	Устанавливается 2000
		установки электронной передачи в	
		режиме "-4" (режим импульсного	
		регулирования)	
d3.36	PD_CW	0: Двухимпульсный (CW/CCW)	Значение по умолчанию 1
		режим	(полярность импульса)
		1. Шаг-направление (P/D)	
		Примечание: Для изменения этого	
		параметра необходимо сохранить	
		его с адресом "d3.00" и	
		перезагрузить.	
d3.00	Store_Loop_Data	1: Запись всех конфигурационных	Устанавливается 1
		параметров контура управления	
		10: Инициализация всех	
		параметров контура управления	

8.2 Режим контроля скорости (режим "-3" или "3")

В режиме мгновенной скорости (режим "-3"), текущая скорость мгновенно достигает заданное значение. В противоположность этому, в режиме скорости с ускорением/торможением (режим "3"), текущая скорость постепенно увеличивается, пока не достигнет заданной скорости. Как ускорение, так и торможение (в виде трапеции) конфигурируются через d2.10 и d2.11, соответственно. В режиме "3" вы можете настроить Крр для того, чтобы включить/выключить регулятор положения. Если регулятор положения включен, колебания скорости меньше, чем когда он выключен. Если Крр равен 0, это указывает на то, что регулятор положения выключен.

Рисунок 8-4 Режим скорости "3" с ускорением/торможением

8.2.1 Подключения в режиме аналогового управления скоростью

Рисунок 8-5 Интерфейсы в режиме аналогового управления скоростью

8.2.2 Параметры режима аналогового управления скоростью

Численно е	Имя переменной	Значение	Значение по умолчанию	Диапазон
значение			-	
d3.22	Analog1_Filter	Используется для сглаживания входных	5	1~127
		аналоговых сигналов.		
		Частота фильтра: f=4000/(2π*		
		Analog1_Filter)		
		Time Constant (T) = Analog1_Filter/4000		
		(S)		
d3.23	Analog1_Dead	Устанавливает зону	0	0~8192
		нечувствительности для внешнего		
		аналогового сигнала 1		
d3.24	Analog1_Offset	Устанавливает смещение для внешнего	0	-8192~8
		аналогового сигнала 1		192
d3.25	Analog2_Filter	Используется для сглаживания входных	5	1~127
		аналоговых сигналов.		
		Частота фильтра: f=4000/(2π*		
		Analog1_Filter)		
		Time Constant (T) = Analog2_Filter/4000		
		(S)		
d3.26	Analog2_Dead	Устанавливает зону	0	0~8192

Таблица 8-9 Параметры режима аналогового управления скоростью

		KIN		ation
		нечувтсвительности для внешнего		
		аналогового сигнала 2		
d3.27	Analog2_Offset	Устанавливает смещение для внешнего	0	-8192~8
		аналогового сигнала 2		192
d3.28	Analog_Speed_Con	Выбирает аналоговые каналы скорости	0	N/A
		0: Неверный аналоговый канал		
		1: Верный аналоговый канал 1 (AIN1)		
		2: Верный аналоговый канал 2 (AIN2)		
		Верный режим -3 и режим 3		
d3.29	Analog_Speed_Factor	Устанавливает пропорцию между	1000	N/A
		аналоговыми сигналами и выходной		
		скоростью		
d3.32	Analog_MaxT_Con	0: Нет управления	0	N/A
		1: Макс. момент, которым может		
		управлять Ain1		
		2: Макс. момент, которым может		
		управлять Ain2		
d3.33	Analog_MaxT_Factor	Указывает макс. множитель для	8192	N/A
		управления моментом аналоговыми		
		сигналами		

Параметр d3.28 равный 1 или 2, активен в режимах -3 и 3

Параметр d3.28 равный 10~17 или 20~27, активен в режимах -3; 3 и 1

Параметр d3.28 равный 10~17 (AIN1 для "Din_Speed (X-10)") соответствует скорости

I	÷	,		. , ,		-	
10	11	12	13	14	15	16	17
Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed
0	1	2	3	4	5	6	7
Параметр d3	3.28 равный 2	20~27 (AIN1	для "Din_Spe	eed (X-10)") o	соответствуе	т скорости	
20	21	22	23	24	25	26	27
Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed	Din_Speed
0	1	2	3	4	5	6	7

8.2.3 Аналоговая обработка сигналов

Рисунок 8-6 Аналоговая обработка сигналов

Электрическое управление внутренними переменными доступно только после АЦП преобразования и смещения внешних аналоговых сигналов, и знания зоны нечувствительности сигналов. Для обработки смещения см. левую часть Рисунка 7-6; для обработки зоны нечувтсвительности см. правую часть Рисунка 7-6.

Математическое уравнение для обработки смещения: $U_{\rm int\ \it ernal} = U_{\it external} - U_{\it shift}$

Математическое уравнение для обработки зоны нечувствительности:

$$\begin{cases} U_{\text{int ernal}} = 0 \cdots - U_{dead} \leq U_{external} \leq U_{dead} \\ U_{\text{int ernal}} = U_{external} - U_{dead} \cdots - U_{dead} > U_{external} \\ U_{dead} < U_{external} \end{cases}$$

Математическое уравнение для интегральной обработки (смещение и зона

$$\begin{cases} U_{\text{int ernal}} = 0 \cdots - U_{\text{dead}} \leq U_{\text{external}} - U_{\text{shift}} \leq U_{\text{dead}} \\ U_{\text{int ernal}} = U_{\text{external}} - U_{\text{shift}} - U_{\text{dead}} \cdots - U_{\text{dead}} > U_{\text{external}} - U_{\text{shift}} \\ U_{\text{dead}} < U_{\text{external}} - U_{\text{shift}} \end{cases}$$

нечувствительности)

Переменная	Значение	Диапазон	
II	Внутренние данные соответствуют	-10 В – 10 В соответствует-2048 – 2047	
U int <i>ernal</i>	внешнему напряжению	при отсутствии напряжения смещения	
		или зоны нечувствительности	
$U_{external}$	Напряжение внешнего входа	-10B – 10B	
U	Напряжение смещения	0 – 10 B	
Shift		соответствует <i>Ana</i> log_ <i>Offset</i> 0~8191	
II	Напряжение зоны	0 – 10 B	
U _{dead}	нечувствительности	соответствует <i>Ana</i> log_ <i>Dead</i> 0~8191	

Таблица 8-10 Переменные аналогового сигнала

Полученный аналоговый сигнал $U_{\mathrm{int}\,\mathrm{ernal}}$ получает U_{filter} после прохождения сквозь фильтр низких

частот первого порядка, и опять применяется к внутренним программам. В режиме аналогового управления скоростью, если проходящий через фильтр аналоговый сигнал $U_{\it filter}$ умножается на множитель, этот сигнал будет считаться внутренней заданной скоростью

 $V_{\scriptscriptstyle demand}$.

Математическое выражение: $V_{demand} = Factor * U_{filter} \cdots - 2048 \le U_{filter} \le 2047$

Выражение для преобразования
$$V_{rpm}$$
 в V_{demand} : $V_{rpm} = \frac{1875 * V_{demand}}{512 * \text{Encoder}_R}$

Примечание: Единица разрешения энкодера - им/об.

8.2.4 Процедура расчетов для режима аналогового управления скоростью

Процедура	Метод	Формула
Шаг 1	Рассчитайте $U_{\it filter}$ в соответствии с напряжением смещения и зоной нечувствительности, которые надо установить	$\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{shift} - U_{dead}}$
Шаг 2	Рассчитайте V_{demand} в соответствии с требуемой скоростью V_{rpm}	$V_{rpm} = \frac{1875 * V_{demand}}{512 * \text{Encoder}_R}$
Шаг 3	Рассчитайте $Factor$ в соответствии с U_{filter} и V_{demand}	$V_{demand} = Factor * U_{filter}$
Шаг 4	Рассчитайте <i>Ana</i> log_ <i>Dead</i> в соответствии с требуемым напряжением зоны нечувствительности	8191/10 =Ana log_Dead
Шаг 5	Рассчитайте <i>Ana</i> log_ <i>Offset</i> в соответствии с требуемым напряжением смещения	$8191/10v = Ana \log_Offset /$

Таблица 8-11 Процедура расчетов для режима аналогового управления скоростью

8.2.5 Примеры режима аналогового управления скоростью

В режиме аналогового управления скоростью, следуйте нижеследующим шагам для того, чтобы настроить привод:

Шаг 1: Подтвердите необходимость включения привода посредством входных дискретных сигналов, см. установки в Таблице 7-12 из Примера 7-3. Если привод не требует включения посредством входных дискретных сигналов, вы можете исключить эту функцию, как указано к Таблице 7-13 из Примера 7-3, и разрешить функцию автовключения привода при включении питания, установив соответствующие внутренние параметры.

Шаг 2: Подтвердите необходимость концевых выключателей. По умолчанию после включения привод работает в установленных пределах. В этом случае на индикаторе показываются состояния концевиков. Если концевые выключатели отсутствуют, запретите эту функцию как указано в Примере 7-4.

Шаг 3: Подтвердите положения переключения режимов и режимов работы, обратившись к установкам из Примера 7-5. Заводские значения установок по умолчанию следующие: Когда не подается сигнал на вход DIN3, привод действует в режиме "-4" (d3.16 = -4); когда на DIN3 подается сигнал, привод действует в режиме "-3" (d3.17 = -3). Если требуется, чтобы после включения питания привод работал в режиме скорости, установите d3.16 в -3 или 3.

Шаг 4: После назначения функций на дискретные входы, определите канал аналогового управления скоростью и установите параметры, такие как множитель соответствия аналогового сигнала скорости, зону нечувствительности, смещение и фильтрацию.

Шаг 5: Сохраните параметры.

Пример 8-3: Режим аналогового управления скоростью (без установки

напряжений зоны нечувствительности и СМЕЩЕНИЯ)

Задача: DIN1 используется для включения привода, DIN2 используется для сброса ошибок, и DIN3 управляет режимами работы привода (когда нет сигнала на входе, устанавливается режим "-3", когда есть сигнал – устанавливается режим "3"). Концевые выключатели отсутствуют. Напряжению 10В соответствует номинальная скорость вращения 3000 об/мин, а напряжению -10В соответствует номинальная скорость вращения -3000 об/мин. Для управления скоростью выберите аналоговый канал 1 (AIN1).

Рисунок 8-7 Схема Примера 8-3

Рассчитать значение U_{filter} в соответствии с напряжением смещения и напряжением зоны нечувтствительности, которые необходимо установить:

 $\frac{2047}{10\nu} = \frac{U_{\it filter}}{10\nu - U_{\it shift} - U_{\it dead}} ~~({\rm B}~{\rm этом}~{\rm примере},~~U_{\it dead} = 0~,~{\rm u}~~U_{\it shift} = 0~)$

Результат: U_{filter} =2047

Рассчитать значение V_{demand} в соответствии с требуемой скоростью V_{rpm} :

$$V_{rym} = \frac{1875 * V_{demand}}{512 * \text{Encoder}_R} = 3000 RPM$$
 (Encoder_R выдает 1000 отсчетов/оборот)

Результат: $V_{demand} = 8192000$

Рассчитать значение параметра *Factor* в соответствии с U_{filter} и V_{demand} :

$$V_{demand} = Factor * U_{filter}$$

Результат: Factor = 4000

Номер	Имя переменной	Значение	Установки параметров
параметра			
d3.01	Din1_Function	Определяет функции	000.1 (Разрешить привод)
		дискретного входа 1	
d3.02	Din2_Function	Определяет функции	000.2 (Сброс ошибок)
		дискретного входа 2	
d3.03	Din3_Function	Определяет функции	000.4 (Контроль над режимом
		дискретного входа 3	работы привода)
d3.05	Din5_Function	Определяет функции	Значение по умолчанию 001.0
		дискретного входа 5	изменяется в 000.0
			(отрицательные пределы
			положения запрещены)
d3.06	Din6_Function	Определяет функции	Значение по умолчанию 002.0
		дискретного входа 6	изменяется в 000.0
			(отрицательные пределы
			положения запрещены)
d3.16	Din _Mode0	Этот режим работы	Устанавливается 0.003 (-3)
		выбирается, когда входной	mode
		сигнал присутствует	(режим мгновенной скорости)
d3.17	Din _Mode1	Этот режим работы	Устанавливается 0.003 режим
		выбирается, когда входной	(3)
		сигнал отсутствует	(режим скорости с
			ускорением/торможением)
d3.22	Analog1_Filter	Используется для сглаживания	
		входных аналоговых сигналов.	
		Filter frequency: f=4000/(2π*	
		Analog1_Filter)	
		Time Constant (T) =	
		Analog1_Filter/4000 (S)	
d3.23	Analog1_Dead	Установить зону	Устанавливается 0
		нечувствительности для	
		внешнего аналогового сигнала 1	
d3.24	Analog1_Offset	Установить смещение для	Устанавливается 0
		внешнего аналогового сигнала 1	
d3.28	Analog_Speed_Con	Выбрать аналоговый канал	Устанавливается 1
		управления скоростью	
		0: Не используется	
		1: Выбран аналоговый канал 1	
		(AIN1)	
		2: Выбран аналоговый канал 2	
		(AIN2)	
		Действителен в режимах -3 и 3	
d3.29	Analog_Speed_Factor	Установить соотношение	Устанавливается 4000

Таблица 8-12 Установки параметров в Примере 8-3

		между аналоговыми сигналами и выходной скоростью	
d2.10	Profile_Acce_16	Установить ускорение в режимах работы 3 и 1.(rps/s)	610 по умолчанию
d2.11	Profile_Dece_16	Установить торможение в режимах работы 3 и 1 (rps/s)	610 по умолчанию
d3.00	Store_Loop_Data	 Сохранение всех параметров конфигурации для контура управления Инициализация всех параметров контура управления 	Устанавливается 1

Пример 8-4 Режим аналогового управления скоростью (установка зоны

нечувствительности)

Задача: Напряжение зоны нечувствительности имеет диапазон от - 0.5 В до 0.5 В, то есть, скорость равна 0 когда напряжение находится в промежутке - 0.5 В до 0.5 В. Напряжению 10 В соответствует 3000 об./мин., и -10 В соответствует -3000 об./мин.

Выбрать аналоговый канал 1 (AIN1) для управления скоростью.

Рисунок 8-8 Схематическая диаграмма примера 8-4

Рассчитать значение $U_{\it filter}$ в соответствии с напряжением смещения и напряжением зоны

нечувствительности, которые надо установить:

$$\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{shift} - U_{dead}}$$
 (В этом примере, $U_{dead} = 0.5$, и $U_{shift} = 0$)

Результат: U_{filter} =1944

Рассчитать значение V_{demand} в соответствии с требуемой скоростью: V_{rpm}

 $V_{rym} = \frac{1875 * V_{demaxd}}{512 * \text{Encoder}_R} = 3000 RPM$, (Encoder R:10000 inc/r)

Результат: $V_{demand} = 8192000$

Рассчитать значение U_{filter} в соответствии с V_{demand} и Factor :

$$V_{demand} = Factor * U_{filter}$$

Результат: *Factor* =4213

Рассчитать значение *Ana* log1_*Dead* в соответствии с требуемым напряжением зоны нечувствительности:

 $8191/10v = Ana \log 1 Dead / U_{dead}$

Результат: $Ana \log 1 _ Dead = 410$

Для примера 7-3 нужны следующие изменения.

Таблица 8-13	3 Установки п	араметров	вΠ	римере 8-4
raomiga o ri	, sonano bian n	apamorpob		

d3.23	Analog1_Dead	Установить зону нечувствительности для	Установить
		внешнего аналогового сигнала 1	410
d3.29	Analog_Speed_Factor	Установить смещение для внешнего	Установить
		аналогового сигнала 1	4213
d3.00	Store_Loop_Data	1: Сохранение всех параметров	Установить
		конфигурации для контура управления	1
		10: Инициализация всех параметров	
		контура управления	

Пример 8-5 Режим аналогового управления скоростью (установка

напряжение смещения)

Задача: Напряжение смещения 1 В, то есть, скорость положительна когда напряжение больше 1 В и отрицательна когда напряжение менее 1 В. В этом случае напряжению 10 В соответствует 3000 об./мин., и -9 В соответствует -3000 об./мин. (в случае -10 В соответствующая скорость менее -3000 об./мин.). Выбрать аналоговый канал 1 (AIN1) для управления скоростью.

Рисунок 8-9 Схематическая диаграмма примера 8-5

Рассчитать значение U_{filter} в соответствии напряжением смещения и напряжением зоны нечувствительности, которые необходимо установить:

 $\frac{2047}{10v} = \frac{U_{\it filter}}{10v - U_{\it shift} - U_{\it dead}} \quad ({\rm в \ этом \ примерe} \ \ U_{\it dead} = 0 \ , \ {\rm M} \ \ U_{\it shift} = 1 \)$

Результат: $U_{filter} = 1842$

Рассчитать значение V_{demand} в соответствии с требуемой скоростью : V_{rpm}

$$V_{rym} = \frac{1875 * V_{demand}}{512 * \text{Encoder}_R} = 3000 RPM$$
, (Encoder R:10000 inc/r)

Результат: V_{demand} = 8192000

Рассчитать значение U_{filter} в соответствии с V_{demand} и Factor:

$$V_{demand} = Factor * U_{filter}$$

Результат: *Factor* =4447

Рассчитать значение *Ana* log1_*Offset* в соответствии с требуемым напряжением смещения:

$$8191/10v = Ana \log 1_Offset / U_{shift}$$

Результат: $Ana \log 1_Offset = 819$

Для примера 8-3 необходимы следующие изменения:

d3.24	Analog1_Offset	Устанавливает смещение для внешнего аналогового сигнала 1	Установить 819
d3.29	Analog_Speed_Factor	Устанавливает соотношение между аналоговыми сигналами и выходной скоростью	Установить 4447
d3.00	Store_Loop_Data	1: Сохранение всех сконфигурированных параметров для контура управления 10: Инициализация всех параметров контура управления	Установить 1

Таблица 8-14 Установки параметров в Примере 8-5

Пример 8-6: Режим аналогового управления скоростью (установка зоны нечувствительности и напряжения смещения)

Задача: Установить напряжение смещения 1В, напряжение зоны нечувствительности от 0.5В до 1.5В, и максимальную скорость, соответствующую 10В: 3000 об./мин. Выбрать аналоговый канал 1 (AIN1) для управления скоростью.

Рисунок 8-10 Схема Примера 8-6

Рассчитать значение U_{filter} в соответствии с напряжением смещения и напряжением зоны нечувствительности, которые необходимо установить:

$$\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{shift} - U_{dead}}$$
 (В этом примере $U_{dead} = 0.5$, и $U_{shift} = 1$)

Результат: U_{filter} =1740

Рассчитать значение V_{demand} в соответствии с требуемой скоростью : V_{rpm}

$$V_{rpm} = \frac{1875 * V_{demand}}{512 * \text{Encoder}_R} = 3000 RPM$$
, (Encoder R:10000 inc/r)

Результат: $V_{demand} = 8192000$

Рассчитать значение Factor в соответствии с U_{filter} и V_{demand} :

$$V_{demand} = Factor * U_{filter}$$

Результат: Factor = 4708

Analog1 Dead в соответствии с требуемым напряжением Рассчитать значение зоны нечувствительности:

 $8191/10v = Ana \log 1 Dead / U_{dead}$

Результат: *Ana* log1_*Dead* =409

Рассчитать значение *Ana* log1_*Offset* в соответствии с требуемым напряжением смещения:

 $8191/10v = Ana \log 1 Offset / U_{shift}$

Результат: Ana log1_Offset =819

Необходимо произвести следующие уставки для Примера 8-3.

	таолица 6-то установка па	раметров для примера о-е)
d3.23	Analog1_Dead	Установка зоны	Установить на 409
		нечувствительности	
		для внешнего	
		аналогового сигнала 1	
d3.24	Analog1_Offset	Установка смещения	Установить на 819
		для внешнего	
		аналогового сигнала 1	
d3.29	Analog_Speed_Factor	Установка	Установить на 4708
		соотношения между	
		аналоговыми	
		сигналами и выходной	
		скоростью	
d3.00	Store_Loop_Data	1: Сохранение всех	Установить на 1
		настроенных	
		параметров контура	
		управления	
		10: Инициализация	
		всех параметров	
		контура управления	

8.3 Режим контроля момента ("4" Mode)

8.3.1 Схема подключения для режима аналогового контроля момента

Рисунок 8-11 Подключения в режиме аналогового контроля момента

8.3.2 Параметры для режима аналогового контроля момента

Номер	Имя	Значение	Значение по	Диапазон
параметра	переменной		умолчанию	
d3.22	Analog1_Filter	Используется для сглаживания	5	1~127
		входных аналоговых сигналов.		
		Filter frequency: f=4000/(2π*		
		Analog1_Filter)		
		Постоянная времени: т =		
		Analog1_Filter/4000 (S)		
d3.23	Analog1_Dead	Установка зоны	0	0~8192
		нечувствительности для		
		внешнего аналогового сигнала 1		
d3.24	Analog1_Offse	Установка смещения для	0	-8192~819
	t	внешнего аналогового сигнала 1		2
d3.25	Analog2_Filter	Используется для сглаживания	5	1~127
		входных аналоговых сигналов.		
		Filter frequency: f=4000/(2π*		
		Analog1_Filter)		
		Постоянная времени (Т) =		

Таблица 8-16 Параметры для режима аналогового контроля момента

			Kinco [®] Au	tomation
		Analog2_Filter/4000 (S)		
d3.26	Analog2_Dead	Установка зоны	0	0~8192
		нечувствительности для внешнего		
		аналогового сигнала 2		
d3.27	Analog2_Offse	Установка смещения для	0	-8192~819
	t	внешнего аналогового сигнала 2		2
d3.30	Analog_Torqu e_Con	Выбрать аналоговый канал управления моментом 0: Не выбран аналоговый канал 1: Выбран аналоговый канал 1 (AIN1) 2: Выбран аналоговый канал 2 (AIN2) Действительно в режиме 4	0	N/A
d3.31	Analog_Torqu e_Factor	Установка соотношения между аналоговыми сигналами и выходного момента (тока)	1000	N/A
d2.15	Speed_Limit_F actor	Коэффициент, который ограничивает максимальную скорость в режиме контроля момента ${F_{Actual_torgas} = F_{Demand_torgas} - N * (V_{Actual_speed} - V_{Max_speed}) - V_{Max_speed}} - V_{Max_speed} - V_{Max$	10	0~1000
d2.24	Max_Speed_R PM	Ограничение максимальной скорости вращения сервомотора	5000	0~6000

8.3.3 Обработка аналогового сигнала

В режиме аналогового контроля момента, внешние команды аналоговых сигналов, напрямую подходят к токовой цепи в сервоусилителе, таким образом, напрямую регулируя ток через внутреннюю токовую цепь. Аналоговый сигнал обрабатывается так же, как и в режиме контроля скорости.

В аналогово-моментном режиме, $I_{\it demand}$ рассчитывается согласно указанному $T_{\it demand}$ с

помощью формулы $T_{demand} = K_t * \frac{I_{demand}}{\sqrt{2}}$ (K_t постоянная момента).

Factor вычисляется согласно I_{demand} и U_{filter} формулой $I_{demand} = \frac{Factor * U_{filter}}{2048 * 2048} * Ipeak$

(Ipeak отображает пиковый ток сервоусилителя).

Ipeak (A) K, (Nm/A) Модель привода Модель мотора SMH60S-0020-30AXK-3LKX 0.48 SMH60S-0040-30AXK-3LKX 0.48 FD422 15 SMH80S-0075-30AXK-3LKX 0.662 SMH80S-0100-30AXK-3LKX 0.562 SMH110D-0105-20AXK-4LKX 0.992 SMH110D-0126-20AXK-4LKX 1.058 FD432 27.5 SMH130D-0105-20AXK-4HKX 1.1578 SMH130D-0157-20AXK-4HKX 1.191 SMH110D-0126-30AXK-4HKX FD622 25 1.058 SMH110D-0157-30AXK-4HKX 0.992 SMH110D-0188-30AXK-4HKX 1.058 SMH130D-0105-20AXK-4HKX 1.1578 SMH130D-0157-20AXK-4HKX 1.191 SMH130D-0210-20AXK-4HKX 1.3232 SMH150D-0230-20AXK-4HKX 1.65

Таблица 8-17 параметры *K*, и *Ipeak*

Kinco[®] Automation

8.3.4 Процедура расчетов для режима аналогового управления моментом

Таблица 8-17 Процедура расчетов для режима аналогового управления моментом

Процедура	Метод	Формула
Шаг 1	Рассчитать $U_{\it filter}$ согласно	$\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{rbif} - U_{dard}}$
	напряжению смещения и	snyi ueuu
	зоны нечувствительности,	
	для которых производится	
	настройка	
Шаг 2	Рассчитать I_{demand} согласно	$T_{demand} = K_t * \frac{I_{demand}}{\sqrt{2}}$
	согласно требуемому	N Z
	крутящему моменту T_{demand}	
Шаг 3	Рассчитать Factor	Factor *1
	согласно to $ U_{_{filter}} $ и $ I_{_{demand}} $	$I_{demand} = \frac{142101 + 0}{2048 \times 2048} * Ipeak$
Шаг 4	Рассчитать Analog_Dead	$8191/10v = Ana \log_{Dead} / U_{dead}$
	согласно зоны	
	нечувствительности	
Шаг 5	Рассчитать Ana log_Offset	$8191/10v = Ana \log_Offset / U_{shift}$
	согласно напряжению	
	смещения	

8.3.5 Примеры режима аналогового управления моментом

В режиме аналогового управления моментом режиме, следуйте шагам, описанным ниже, для настройки сервоусилителя:

Шаг 1: Подтвердите необходимость включения сервоусилителя через внешние дискретные входы. Чтобы включить сервоусилитель через внешние дискретные входы, смотри Таблицу 7-12 в Примере 7-3 для настроек. Если сервоусилитель не требует включения через внешние дискретные порты, вы можете отключить функцию включения внешних дискретных портов согласно Таблице 7-13 Примера7-3, и включить функцию авто подачи питания сервоусилителя настройкой его внутренних параметров.

Шаг 2: Подтвердите режим переключения позиции и управляющих режимов согласно параметрам в Примере 7-5. Заводские настройки сервоусилителя по умолчанию такие: Когда никакие сигналы не подведены к DIN3,сервоусилитель работает в режиме "-4" (d3.16 = -4); когда сигнал подведен к DIN3, сервоусилитель работает в режиме "-3" (d3.17 = -3). Когда нужно чтобы сервоусилитель управлялся в моментном режиме ("4" mode), установите d3.16 или d3.17 на 4. В таком случае d3.16 = 4, если у DIN3 нет входящих сигналов когда подано питание на сервоусилитель, он работает в режиме "4" mode. . В таком случае d3.17 = 4, если у DIN3 есть входящий сигнал, сервоусилитель работает в режиме "4".

Шаг 3: После настройки функций дискретных портов, выберете аналоговый вход задания момента, и установите параметры, такие как коэффициенты, зона нечувствительности, смещение, фильтрация, коэффициенты ограничения скорости, максимальные пределы скорости.

Шаг 4: Сохраните параметры.

Пример 8-7: Режим аналогового управления моментом (без установки

зоны нечувствительности и напряжения смещения)

Задача: DIN1 используется для включения сервоусилителя, DIN2 используется для сброса ошибки, и DIN3 контролирует режимы работы сервоусилителя (режим "4" когда сигнал отсутствует, и режим "3" когда сигнал присутствует). Кt сервомотора 0.48 Nm/A, пиковый ток сервоусилителя 15 A. Аналоговое входное напряжение -10 V соответствует -0.64 Nm, и 10 V соответствует 0.64 Nm. Выбрать аналоговый канал 2 (AIN1) для контроля момента.

Рисунок 8-12 Схема Примера 8-7

Вычислить $U_{\it filter}$ согласно напряжению смещения и напряжению зоны нечувствительности, которые требуют настроек:

 $\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{shift} - U_{dead}}$ (в этом примере, $U_{dead} = 0$, and $U_{shift} = 0$)

Результат: U_{filter} =2047

Вычислить I_{demand} согласно требуемому моменту T_{demand} :

$$I_{demand} = \frac{T_{demand}}{K_t} * \sqrt{2}$$

Результат: *I*_{demand} = 1.89

Вычислить *Factor* согласно U_{filter} and I_{demand} :

$$Factor = \frac{I_{demand}}{U_{filter} * Ipeak} * 2048 * 4096$$

Результат: $Factor = \frac{1.89}{2047*15} * 2048 * 4096 = 515$

Таблица	8-18	Настройка	поромот	numono	8_7
таолица	0-10	пастроика	napamen	римере	0-1

Номер	Имя переменной	Значение	Настройка параметров
параметра			
d3.01	Din1_Function	Определение	000.1 (Сервоусилитель
		функции дискретного	включен)
		порта 1	
d3.02	Din2_Function	Определение	000.2 (Сброс ошибки)
		функции дискретного	

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

		порта 2	
d3.03	Din3_Function	Определение функции дискретного порта 3	000.4 (Управление режимами сервоусилителя)
d3.16	Din _Mode0	Выбрать этот режим,	Установить режим 0004
		когда входной сигнал	(4) (Моментный режим)
		отсутствует	
d3.17	Din _Mode 1	Выбрать этот режим,	Установить режим 0.003
		когда входной сигнал	(3) (режим скорости с
		присутствует	ускор/замедл)
d3.25	Analog2_Filter	Используется для сглаживания входных	
		аналоговых сигналов.	
		Фильтр частоты:	
		f=4000/(2π*	
		Analog1_Filter)	
		Временная	
		переменная: Т =	
		Analog2_Filter/4000	
42.00	Analog2 Dood		
03.20	Analogz_Dead	установка зоны	установить на о
		нечувствительности	
		2	
d3.27	Analog2_Offset	Установка смещения	Установить на 0
	u _	для входного	
		аналогового сигнала	
		2	
d3.31	Analog_Torque_Factor	Установка пропорции	Установить на 515
		между входным	
		аналоговым сигналом	
		и выходным	
		моментом	
d3.30	Analog_Torque_Con	Выбор сигналов контроля момента	Установить на 2
		0: Не выбран вход	
		1: Работа по	
		аналоговому входу 1	
		(AIN1)	
		требуемый режим 4	
43.00	Store Loop Data		Истановить на 1
43.00		настроенных	JUIANUBUID HA I

	параметров контура	
	управления	
	10: Инициализация	
	всех параметров	
	контура управления	

Пример 8-8: Режим аналогового управления моментом (установка зоны нечувствительности и напряжения смещения)

Требование: Напряжение смещения 1V, и напряжение зоны нечувствительности 0.5V. Кt сервомотора 0.48 Nm/A, и пиковый ток сервоусилителя 15A. Аналоговое входное напряжение 10V соответствующее 0.64Nm. Выбрать аналоговый канал 2 (AIN2) для контроля момента.

Рисунок 8-13 Схема Примера 8-8

Вычислить U_{filter} согласно напряжению смещения и напряжению зоны нечувствительности, м:

 $\frac{2047}{10v} = \frac{U_{filter}}{10v - U_{shift} - U_{dead}}$ (В этом примере, $U_{dead} = 0.5$, and $U_{shift} = 1$)

Результат: U_{filter} =1740

Вычислить I_{demand} согласно требуемому крутящему моменту T_{demand} :

$$I_{demand} = \frac{T_{demand}}{K_t} * \sqrt{2}$$

Результат: I_{demand} = 1.89

Вычислить *Factor* согласно U_{filter} и I_{demand} :

$$Factor = \frac{I_{demand}}{U_{filter} * Ipeak} * 2048 * 4096$$

Результат: $Factor = \frac{1.89}{1740*15}*2048*4096 = 606$

Вычислить Ana log 2 Dead согласно требуемому напряжению зоны нечувствительности:

$$Analog2_Dead = \frac{8191}{10v} * U_{dead}$$

Результат: $Ana \log 2 _ Dead = 410$

Вычислить *Ana* log 2 *Offset* согласно требуемому напряжению смещения:

Analog2_Offset =
$$\frac{8191}{10v} * U_{shift}$$

Результат: *Ana* log 2 _ *Offset* =819

Следующие параметры требуют изменения в дополнение к параметрам из Примера 8-7.

	Таблица 8-19 Установка па	раметров в примере 8-8	
d3.26	Analog2_Dead	Установка зоны	Установить на 410
		нечувствительности	
		для внешнего	
		аналогового сигнала 2	
d3.27	Analog2_Offset	Установка смещения	Установить на 819
		для внешнего	
		аналогового сигнала 2	
d3.31	Analog_Torque_Factor	Установка пропорции	Установить на 2362
		между входным	
		аналоговым сигналом	
		и выходным крутящим	
		моментом	
d3.00	Store_Loop_Data	1: Сохранение всех	Установить на 1
		настроенных	
		параметров контура	
		управления	
		10: Инициализация	
		всех параметров	
		контура управления	

8.4 Режим позиционирования по заложенным программам (режим "1")

При режиме позиционирования по заложенным программам, мы можем активировать внутренние предустановленные позиции с помощью внешних сигналов. Для активации необходимо выполнить 2 условия:

1, Режим позиционирования по внутренним программам может быть активирован только в режиме 1, в других режимах он не может быть активирован.

2, Хотя бы один из дискретных сигналов определяется как "Internal position control 0", "Internal position control 1 " или "Internal position control 2 ", что означает, что хотя бы один из адресов -d3.01 ~ d3.07 устанавливается на "040.0", "080.0" или "800.2.

"Internal position control 0", "Internal position control 1" и "Internal position control 2 ", эти три сигнала будут скомбинированы в бинарные коды, используемые для выбора целевой позиции между "Position 0~7".

Управле- ние по заложен- ной позиции 0	Управле- ние по заложен- ной позиции 1	Управле- ние по заложен- ной позиции 2	Соответствую щая позиция	Номер параметра	Соответствующая скорость	Номер параметра
0	0	0	Din_Pos0		Din_Speed0_RPM	d3.18
0	0	1	Din_Pos1		Din_Speed1_RPM	d3.19
0	1	0	Din_Pos2		Din_Speed2_RPM	d3.20
0	1	1	Din_Pos3	d3.40выбор номера последовательности d3.41выбор секции	Din_Speed3_RPM	d3.21
1	0	0	Din_Pos4	старший бит d3.42 выбор секции	Din_Speed4_RPM	d3.44
1	0	1	Din_Pos5	младший бит	Din_Speed5_RPM	d3.45
1	1	0	Din_Pos6		Din_Speed6_RPM	d3.46
1	1	1	Din_Pos7		Din_Speed7_RPM	d3.47

Таблица 8-20 Таблица параметров режима позиционирования по заложенным программам

Примечание: В этом режиме управления, "position section X" может быть положительной и отрицательной; в то время как соответствующая скорость должна быть положительной. Другие параметры, такие как ускорение, торможение и т.д., могут использовать параметры по умолчанию; или также могут быть изменены через параметры.

Пример 8-9: Режим позиционирования по заложенным программам

Сервомотор должен провернуть вал в четыре положения. В позиции сегмента 0, он должен достичь положения за 5000 импульсов на скорости 100RPM. В позиции сегмента 1, он должен достичь положения за 15000 импульсов на скорости 150RPM. В позиции сегмента 2 он должен достичь положения за 28500 импульсов на скорости 175RPM. В позиции сегмента 3, он должен достичь положения за -105000 импульсов на скорости 200RPM. В позиции сегмента 4, он должен достичь положения за -20680 импульсов на скорости 300RPM. В позиции сегмента 5, он должен достичь

положения за -30550 импульсов на скорости 325RPM. В позиции сегмента 6, он должен достичь положения за 850 импульсов на скорости 275RPM. В позиции сегмента 7, он должен достичь положения за 15000 импульсов на скорости 460RPM.

Таблица 8-21 Т	ребования для	режима позиционировани	ия по заложенным	программам
	ресования для	ролиниа поонционировани		nporpannam

	Сервоусилитель включен, вал сервомотора		
	заблокирован		
DIN3	Режим работы сервоусилителя (допустим 1)		
DIN4	Заложенная позиция 0		
DIN5	Заложенная позиция 1		
DIN6	Заложенная позиция 2		
DIN6:DIN5:DIN4=0:0:0	Выбор позиции и скорости в секции 0		
DIN6:DIN5:DIN4=0:0:1	Выбор позиции и скорости в секции 1		
DIN6:DIN5:DIN4=0:1:0	Выбор позиции и скорости в секции 2		
DIN6:DIN5:DIN4=0:1:1	Выбор позиции и скорости в секции 3		
DIN6:DIN5:DIN4=1:0:0	Выбор позиции и скорости в секции 4		
DIN6:DIN5:DIN4=1:0:1	Выбор позиции и скорости в секции 5		
DIN6:DIN5:DIN4=1:1:0	Выбор позиции и скорости в секции 6		
DIN6:DIN5:DIN4=1:1:1	Выбор позиции и скорости в секции 7		
DING	Активировать команду (выполнить		
	выбранную последовательность)		

1. Определение значений точек ввода

Номер параметра	Имя переменной	Путь настройки
d3.01	Din1_Function	000.1 (Сервоусилитель включен)
d3.03	Din3_Function	000.4 (Установить режим сервоусилителя)
d3.04	Din4_Function	040.0 (Управление по заложенной позиции 0)
d3.05	Din5_Function	080.0 (Управление по заложенной позиции 1)
d3.06	Din6_Function	800.2 (Управление по заложенной позиции 2)
d3.07	Din7_Function	400.0 (Активировать команду)
d3.16	Din_mode 0	Установить 0001 (1) режим Позиционирование по заложенным программам
d3.17	Din_mode 1	Установить 0.004 (-4) режим Импульсный режим управления
d3.00	Сохранение	1 (сохранение изменений)

Номер параметра	Имя переменной	Настройка параметров	
d3.43	Относительный / Абсолютный выбор позиции	Установить на 2F(абсолютное положение)	
d3.40	Установить номер секции	Установить на 0 (выбрать	
03.40	позиционирования 0	номер позиции 0)	
d3.41	Установить высшую часть позиции сегмента (N*10000)	Установить на 0	
	Установить низшую часть позиции	Установить на 5000	
d3.42	сегмента	(установить позицию	
		сегмента 0 на 5000)	
d3.18	Установить скорость сегмента 0	Установить на 100 (установить	
		скорость сегмента 0 на 100)	
d3 40	Установить номер позиции	Установить на 1 (выбрать	
	сегмента 1	позицию секции 1)	
d3.41	Установить высшую часть позиции сегмента (N*10000)	Установить на 1	
		Установить на 15000	
d3.42	установить низшую часть позиции	(установить позицию секции 1	
	Сегмента	на 15000))	
d3.19		Установить на 150 (установить	
	установить скорость сегмента т	скорость сегмента 1 на 150)	
42.40	Установить номер позиции	Установить на 2 (выбрать	
u3.40	сегмента 2	позицию секции на 2)	
d3.41	Установить высшую часть позиции сегмента (N*10000)	Установить на 2	
		Установить на 28500	
d3.42	эстановить низшую часть позиции	(установить позицию	
	Сегмента	сегмента 2 на 28500)	
43.20		Установить на 175 (установить	
u3.20	установить скорость сегмента т	скорость сегмента 2 на 175)	
d3.40	Установить номер позиции	Установить на 3 (выбрать	
	сегмента 3	позицию секции 3)	
d3.41	Установить высшую часть позиции сегмента (N*10000)	Установить на 3	
d3.42		Установить на 10500	
	установить низшую часть позиции	(установить позицию секции 3	
	Сегмента	на 10500)	
d3.20		Установить на 200 (установить	
	эстановить скорость сегмента з	скорость сегмента 3 на 200)	
d2.10	Ускорение	По умолчанию 610 rps/s	
d2.11	Замедление	По умолчанию 610 rps/s	
42.00		1 (настройка параметров	
d3.00	параметры памяти	памяти)	

Таблица 8-23 Настройка перемещений и скорости

Установить все эти параметры, затем:

1. Включить сервоусилитель, что означает установить дискретный вход DIN1 в верхнее положение.

2. Установить выбор позиции, что означает изменить электрический уровень DIN4 и DIN5.

3. Активировать инструкции и выполнить программу, , что означает установить дискретный вход DIN6 в верхнее положение.

Примечание:

В режиме позиционирования по заданным программам, выбрать режим местоположения путем установки различных переменных дискретного канала d3.43. Если вы выбрали режим абсолютного позиционирования, установите параметр на "F"; если инструкции требуют немедленной корректировки, установите параметр на "2F"; если вы выбрали режим относительного позиционирования, установите параметр на "4F"или "84F".Для успешного изменения этих параметров, нужно сохранить значение d3.00, затем перезапустить.

8.5 Режим контроля скорости по предустановленным программам (режим "-3" или "3")

В этом режиме управления, внешние входные сигналы используются для активации внутренне настраиваемой конечной скорости для контроля за сервомотором. Есть две предпосылки для активации:

1. Многоскоростное управление доступно в режимах "-3" ог "3", и не доступно в других режимах.

2. Установить d3.28 на 0. В таком случае, аналогово-скоростной канал не действителен.

3. Хотя бы один внешний входной сигнал DinX_Function определяется Bit8 или Bit9.

К примеру, определить Din2_Function соответствующей Din2 как 010.0, и Din3_Function соответствующей Din3 как 020.0. Таким образом, комбинация двух этих сигналов используется для выбора любого из Din_Speed0_RPM, Din_Speed1_RPM, Din_Speed2_RPM или Din_Speed3_RPM как целевую скорость.

Таблица 8-24 Параметры режима контроля скорости по предустановленным программам

Внешний контроль	Внешний контроль	Значение	Номер	Действительный
скорости 0	скорости 1		параметра	объект
(Din_Sys.Bit8)	(Din_Sys.Bit9)			(операции на
				цифровом дисплее)
0	0	Управление	d3.18	
		многошаговой		
		скоростью 0 [rpm]		Din_Speed0_RPM
1	0	Управление	d3.19	
		многошаговой		
		скоростью 1 [rpm]		Din_Speed1_RPM
0	1	Управление	d3.20	
		многошаговой		
		скоростью 2 [rpm]		Din_Speed2_RPM
1	1	Управление	d3.21	
		многошаговой		
		скоростью 3 [rpm]		Din_Speed3_RPM

Примечание: Если вам нужно задать более точную скорость, нужно установить Din_Speed0, Din_Speed1, Din_Speed2 и Din_Speed3 на хост компьютера. Четыре единицы данных будут являться внешними, это подходит для пользователей которые уже знакомы с сервоусилителями. Din_SpeedX_RPM показывает данные после конвертирования Din_SpeedX в единицах rpm для упрощения работы пользователя. Преобразование включает процессы чтения и написания, и не подразумевает расчетов пользователем.

Пример 8-10: Режим контроля скорости по предустановленным программам

Задача: Необходимо задать дискретные входы DIN6 и DIN7 на выбор предустановленных скоростей, DIN1 на включение сервоусилителя и DIN2 на режим управление сервоусилителем (режим "3" когда сигнал присутствует, и "-3" когда сигнал отсутствует). Для более детальных требований, см. таблицу 8-25. Для управляющего режима, см. таблицу 8-26.

Таблица 8-25 Рекомендуемые параметры для режима контроля скорости по предустановленным

·····			
DIN6:DIN7=0:0	Выполнить 1 предустановленную скорость (100 rpm)		
DIN6:DIN7=1:0	Выполнить 2 предустановленную скорость (200 rpm)		
DIN6:DIN7=0:1	Выполнить 3 предустановленную скорость (300 rpm)		
DIN6:DIN7=1:1	Выполнить 3 предустановленную скорость (400 rpm)		
DIN1	Включить сервоусилитель, заблокировать вал сервомотора		
DIN2	Сменить режим привода (режим "3" когда сигнал присутствует, и "-3" когда отсутствует)		

программам

Таблица 8-26 Установочные способы для внешнего контроля многоскоростного режима

Номер параметра	Имя переменной	Установочный способ		
d3.01		Установить на 000.1		
	Din1_Function	(Сервоусилитель включен)		
d3.02		Установить на 000.4		
		(Контроль за рабочими режимами		
	Din2_Function	сервоусилителя)		
d3.06		Установить на 010.0		
	Din6_Function	(Внешний контроль скорости 0)		
d3.07		Установить на 020.0		
	Din7_Function	(Внешний контроль скорости 1)		
d3.16		Установить на 0.003 (3) mode		
		(Скоростной режим с		
	Din_Mode0	ускорением/замедлением)		
d3.17		Установить на 0.003 (-3) режим		
	Din_Mode1	(режим постоянной скорости)		
d3.18	Din_Speed0_RPM	Установить на 100 [rpm]		
d3.19	Din_Speed1_RPM	Установить на 200 [rpm]		
d3.20	Din_Speed2_RPM	Установить на 300 [rpm]		
d3.21	Din_Speed3_RPM	Установить на 400 [rpm]		
d3.00	Store_Loop_Data	Установить на 1		

8.6 Режим внешнего контроля по моменту ("4" Режим)

В режиме внешнего контроля по моменту, работает только токовая цепь сервоусилителя. Установите d0.03 (CMD_q target current) параметр, непосредственно чтобы получить желаемый момент. d3.30 должен быть установлен на 0. В этом случае, аналоговый сигнал контроля момента игнорируется.

8.7 Режим поиска нулевой точки ("6" Режим)

1, Кратко

Чтобы система выполнила позиционирование в соответствии со своим абсолютным расположением, первым шагом будет определение точки отсчета. Например, как показано на XY диаграмме, чтобы осуществить перемещение (X, Y) = (100mm, 200mm), сначала вы должны определить нулевую точку отсчета.

2, Процедура поиска нулевой точки

Используйте следующие шаги для поиска нулевой точки:

- 1. Установить внешние I / О параметры, сохранить изменения.
- 2. Установить данные для поиска нулевой точки, сохранить изменения.
- 3. Выполнить поиск нулевой точки.

3, Настройка параметров для поиска нулевой точки

Здесь приведены простые описания параметров для выполнения поиска нулевой точки.
0x607C0020	Home_Offset	Смещение нулевой	В режиме поиска нулевой точки,
		точки	установить относительное смещение
			на нулевую точку.
0x60980008	Homing_Method	Способ поиска	Выбрать способ поиска нулевой точки.
		нулевой точки	
0x60990120	Homing_Speed_Switch	Скорость поиска	Установить скорость поиска концевого
		концевого	выключателя, которая определяется
		выключателя	как нулевой сигнал.
0x60990220	Homing_Speed_Zero	Скорость поиска	Верно только когда ищется индексный
		нулевой точки	сигнал.
0x60990308	Homing_Power_On	Поиск нулевой точки	Каждый раз после подачи питания
		Когда питание	начинается поиск нулевой точки.
		включено	
0x609A0020	Homing_Accelaration	Ускорение поиска	Контроль за ускорением поиска
		нулевой точки	нулевой точки.

У серии CD есть 37 способов поиска нулевой точки, относящихся к определению CANopen DSP402. 1й-14й способы используют сигнал Z как нулевую точку.

17й-30й способы используют внешний сигнал как нулевую точку.

Способ 1: Поиск нулевой точки по заднему концевому выключателю и индексному импульсу

При этом методе, начальное движение осуществляется влево, если задний концевой выключатель не активен (как показано ниже). Нулевой точкой принимается позиция на первом индексном импульсе справа от позиции, где задний концевой выключатель становится не активен.

Способ 2: Поиск нулевой точки по переднему концевому выключателю и индексному импульсу

При этом методе, начальное направление движения осуществляется вправо, если передний концевой выключатель не активен (как показано ниже). Нулевой точкой принимается позиция на первом индексном импульсе слева от позиции, где передний концевой выключатель становится не активен.

Способы 3 и 4: Поиск нулевой точки по включению нулевого выключателя и индексному сигналу

При методе 3 или 4, начальное направление зависит от состояния нулевого выключателя. Нулевой точкой принимается позиция на первом индексном импульсе слева или справа от позиции, где нулевой выключатель меняет состояние. Если начальное положение располагается так, что направление движения должно быть изменено во время поиска нулевой точки, эта точка может находиться в любом месте после смены состояния нулевого выключателя.

Способы 5 и 6: Поиск нулевой точки по выключению нулевого выключателя и индексному импульсу

При методе 5 или 6, начальное направление движения зависит от состояния нулевого выключателя. Нулевой точкой принимается позиция на первом индексном импульсе слева или справа от позиции, где нулевой выключатель меняет состояние. Если начальное положение располагается так, что направление движения должно быть изменено во время поиска нулевой точки, эта точка может находиться в любом месте после смены состояния нулевого выключателя.

110

Способы с 7 по 14: Поиск по нулевому выключателю и индексному импульсу

Эти способы используют нулевой выключатель, который включен только на части пути; при его переключении происходит реверс движения и перемещение до индексного импульса.

При использовании методов с 7 по 10, начальное направление движения - вправо, при использовании методов с 11 по 14, начальное направление движения - влево, кроме случая, когда нулевой выключатель активен при старте движения. В этом случае, начальное направление движения связано с поиском концевого выключателя. Нулевой точкой принимается позиция на индексном импульсе после падающего или переднего фронта нулевого выключателя, как показано на следующих двух схемах. Если начальное движение направлено от нулевого выключателя, сервоусилитель должен изменить движение на противоположное при соприкосновении с концевым выключателем.

Передний концевик

Способы 15 и 16: Зарезервированы

Эти способы зарезервированы для будущего расширения режима поиска нулевой точки.

Способы с 17 по 30: Поиск нулевой точки без индексного импульса

Эти способы аналогичны способам с 1 по 14, за исключением того, что позиция нулевой точки не зависит от индексного сигнала; она зависит только от соответствующей начальной точки и переключения концевых выключателей. К примеру, способы 19 и 20 схожи со способами 3 и 4, что показано на следующей схеме:

Сервопривода серии JD

113

Способы 31 и 32: Зарезервированы

Эти способы зарезервированы для будущего расширения режима поиска нулевой точки.

Способы 33 и 34: Поиск нулевой точки по индексному сигналу

Способ 35: Нулевая точка на текущей позиции

В этом способе, текущая позиция принимается за нулевую точку.

Способы -17 и -18: Использование механического упора как точки отсчета

114

Задний концевик

Передний концевик

Пример 8-11 Использование метода 7 для поиска нулевой точки

1. Установочные параметры.

Номер параметра	Наименование параметра	Пояснение	Установить
d3.01	Din1_Function		000.1 (Включить привод)
d3.02	Din2_Function	000.1: Включить привод	000.2 (Сброс ошибки драйвера)
d3.03	Din3_Function	000.2: Сброс ошибки драйвера	000.4 (Рабочий режим)
d3.04	Din4_Function	000.4: Рабочий режим 001.0: Передний концевик 002.0: Задний концевик	200.0 (Запуск возврата к начальному положению)
d3.05	Din5_Function	004.0:Источник сигнала 200.0:Запуск поиска	001.0 (Передний концевик)
d3.06	Din6_Function	нулевой точки	002.0 (Задний концевик)
d3.07	Din7_Function	-	004.0 (Сигнал начального положения
d3.14	Dout4_Function	004.0: Индексный сигнал	(Отображается индексный сигнал)
d3.15	Dout4_Function	040.0: Найден источник	(Найден источник)
d3.16	Din_Mode0	Выбрать этот режим, когда входной сигнал отсутствует	0.004 (-4)

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

d3.17	Din_Mode1	Выбрать этот режим, когда входной сигнал присутствует	0.003 (-3)
d3.00	Store_Loop_Data	 Сохранить все установленные параметры, кроме параметров мотора Инициализировать все установленные параметры, кроме параметров мотора 	0001 (1)

На компьютере отображается

😼 I/O Port					
Function	Sim	lateP	olarity	y Real	Virtual
DIN1 driver enable	[•	•
DIN2 fault reset	···			•	•
DIN3 operation mode	[•	•
DIN4 Start homing	[•	•
DIN5 positive limit	[•	•
DIN6 negetive limit	[•	•
DIN7 homing signal	[•	•
DINSNULL	[•	•
Function		Simul	ate Pol	larity	Real
DOUT1 ready	-	[•
DOUT2 error		- [•
DOUT3 position reache	ed+vel.	[•
DOUT4 index	-	- [•
DOUTS Reference found	ı .	. [•
DOUT6 NULL		[•
DOUT7 NULL					

Примечание: Передний и задний концевые выключатели обычно считаются нормально закрытыми. Иначе, панель будет подавать аварийный сигнал и отображать P.L (передний концевик) and N.L (задний концевик). Только когда аварийный сигнал убран, режим контроля источника может быть использован в обычном режиме.

Компьютер отображает статус:

	name	data	unit
1*	Operation_Mode_Buff	-4	DEC
2*	Status_Word	4437	HEX
3*	Pos_Actual	0	inc
4 *	Real_Speed_RPM	0	rpm
5*	I_q	0.000	Ap
6	Operation_Mode	-4	DEC
7	CMD_q	0.000	Ap
8	Pos_Target	Ø	inc
9	SpeedDemand_RPM	Ø	rpm
10	Control_Word	2f	HEX
11	Switch_On_Auto	Ø	DEC
12	CMD_q_Max	6.797	Ap

2. Установка параметров возврата.

😵 Homi	ng Mode		_ <u> </u>
	name	data	unit
1	Home_Offset	0	inc
2	Homing_Method	7	DEC
3	Homing_Speed_Switch	150.000	rpm
4	Homing_Speed_Zero	100.000	rpm
5	Homing_Power_On	0	DEC
6	Homing_Accelaration	50.000	rps/s
7	Homing_Current	1.780	Ap

В общем случае, требуется установить только модель источника, а остальные параметры остаются по умолчанию. В некоторых случаях, "Electrify and then find the origin" устанавливается на 1, в то же время определение -- "Start finding the origin" устраняется.

3. Пуск определения начального положения.

(1). Включить мотор, это означает, что дискретный вход 1 должен быть активирован. Ниже представлена картинка с компьютера:

(2). Отправить сигнал "Start finding the origin" на мотор, что означает, что дискретный вход 4 активирован. Ниже представлена картинка с компьютера:

💡 1/O Port				-	
Function	Sin	nulato	ePolarit	y Real	Virtual
DIN1 driver enable				•	•
DIN2 fault reset				•	•
DIN3 operation mode				•	•
DIN4 Start homing		Γ		•	•
DIN5 positive limit				•	•
DIN6 negetive limit				•	•
DIN7 homing signal				•	•
DINS NULL				•	•
Function		Sin	nulate Po	larity	Real
DOUT1 ready					•
DOUT2 error					•
DOUT3 position reach	ed+vel				•
DOUT4 index					•
DOUTS Reference foun	d				•
DOUT6 NULL					•
DOUT7 NULL					

Примечание: "Start finding the origin" это импульсный сигнал, требуется только его скачок, нет необходимости все время держать его в состоянии «On». Если нужно запустить его в следующий раз, достаточно возрастания импульса.

(4). После того как внешний сигнал нашел источник, картинка с компьютера будет выглядеть так:

💱 1/O Port				í.	
Function	Si	mulate	Polari	ty Real	Virtual
DIN1 driver enable				•	•
DIN2 Fault reset				•	•
DIN3 operation mode				•	•
DIN4 Start homing	•••			•	•
DIN5 positive limit	•••			•	•
DIN6 negetive limit	•••			•	•
DIN7 homing signal				•	•
DIN8 NULL				•	•
Function		Sim	ulate Po	larity	Real
DOUT1 ready					•
DOUT2 error					•
DOUT3 position reach	ed+ve]				•
DOUT4 index					•
DOUTS Reference foun	d	1			•
DOUT6 NULL					•
DOUT7 NULL					•

(5). Драйвер ищет сигнал фазы Z в режиме 7, и, в конечном счете, находит источник. Картинка с компьютера будет выглядеть так:

2 1/0 Port				
Function	Simu	late Pola	ity Real	Virtual
DIN1 driver enable	[•
DIN2 Fault reset	🛽		•	•
DIN3 operation mode	[•	•
DIN4 Start homing	••• 🚺		•	•
DIN5 positive limit	· 🛽			•
DIN6 negetive limit	[•	•
DIN7 homing signal	· [•	•
DIN8 NULL	[•	•
Function		Simulate	Polarity	Real
DOUT1 ready		· 🔲		•
DOUT2 error		· 🔲		•
DOUT3 position reach	ed+vel	-		•
DOUT4 index		-		•
DOUTS Reference foun	d			•
DOUT6 NULL		-		•
DOUT7 NULL		-		•

В данном пункте, вы завершили функцию поиска источника, далее позиция привода устанавливается на 0, и текущая позиция является базовой для источника. Картинка с компьютера будет выглядеть так:

	name	data	unit
1*	Operation_Mode_Buff	-4	DEC
2*	Status_Word	c437	HEX
3*	Pos_Actual	5	inc
4*	Real_Speed_RPM	0	rpm
5*	I_q	0.044	Ap
6	Operation_Mode	-4	DEC
7	CMD_q	0.000	Ap
8	Pos_Target	0	inc
9	SpeedDemand_RPM	0	rpm
10	Control_Word	2f	HEX
11	Switch_On_Auto	0	DEC
12	CMD_q_Max	6.797	Ap

Глава 9 Контроль производительности

9.1 Реверс в автоматическом режиме

В этом режиме двигатель будет работать в прямом и обратном направлении непрерывно в соответствии настройками режима. Пользователь может установить параметры в режимах контура скорости и контура положения. Пожалуйста убеждайтесь что, автоматическая подача вперёд/назад разрешена в машине, прежде чем использовать этот режим, а так же убедитесь, что питание привода можно отключить в любое время, чтобы избежать несчастных случаев.

Процесс управления в режиме автоматического реверса:

- 1: Используйте программное обеспечение JD-PC в соответствии с главой 5
- 2: Установите режим управления скоростью в соответствии с 5.4.1.
- 3: Откройте меню "Driver-Operation mode-Auto Reverse" и установите параметр для автоматического реверса.

Установите "Auto_Reverse" как 0 для работы без контроля.

Установите "Auto_Reverse" как 1 для управления положением. Двигатель будет работать между положением "Auto_Rev_Pos" и "Auto_Rev_Neg". Единица измерения шаг. Скорость зависит от задающего сигнала.

Установите "Auto_Reverse" как 3 для контроля времени. Двигатель будет работать между временными "Auto_Rev_Pos" и "Auto_Rev_Neg". Единица измерения мс. Скорость зависит от задающего сигнала.

На следующем рисунке показано, какие параметры нужно установить. На этом рисунке, сервопривод будет работать между -10000 и 10000 со скоростью 100 оборотов в минуту.

	name	data	unit
1*	Operation_Mode_Buff	0	DEC
2*	Status_Word	2f	HEX
3*	Pos_Actual	0	inc
4*	Real_Speed_RPM	0	rpm
5*	Iq	0.054	Ap
6	Operation_Mode	3	DEC
7	CMD_q		Ap
8	Pos_Target		inc
9	SpeedDemand_RPM	100	rpm
10	Control_Word	f	HEX
Aut	o Reverse		- 0
	name	data	unit
1	Auto_Rev_Pos	10000	DEC
2	Auto_Rev_Neg	-10000	DEC
3	Auto Reverse	1	DEC

9.2 Настройка параметров производительности привода

Рисунок 9-1 Схема регулирования

Как показано на рисунке 9-1, типичная сервосистема содержит три контура регулирования, а именно регулятор положения, регулятор скорости, регулятор тока.

Регулятор тока относится к настройкам мотора (оптимальные параметры конкретной модели мотора предустановленны в драйвере и не требуют настройки).

Параметра для регулятора скорости и регулятора положения должны тщательно настраиваться в соответствии с условиями работы мотора.

При настройке регуляторов следите за тем, чтобы полоса пропускания регулятора скорости по крайней мере в два раза превышала полосу пропускания регулятора позиции; иначе возможны автоколебания.

9.2.1 Ручная настройка

1. Параметры регулятора скорости

Таблица 9-1 Параметры регулятора скорости

Номер	Имя переменной	Пояснение	Исх.	Диапазон
параметра			значение	
d2.01	Кvр	Устанавливает время реакции контура	100	0~32767
		регулирования скорости		
d2.02	Kvi	Корректировка управления скоростью	2	0~16384
		для компенсации времени		
		незначительных ошибок		
d2.05	Speed_Fb_N	Уменьшает шум при работе мотора	45	0~45
		путем уменьшения полосы обратной		
		связи контуров скорости (сглаживая		
		сигналы обратной связи энкодеров). При		
		уменьшении полосы реакция мотора		
		становится более медленной.		
		Используется следующая формула:		
		F=Speed_Fb_N*20+100.		
		Например, для установки полосы		
		фильтра в "F = 500 Гц" необходимо		
		установить значение этого параметра,		
		равное 20.		

Пропорциональный коэффициент усиления контура скорости Кvp: при увеличении пропорционального коэффициента усиления контура скорости полоса чувствительности контура скорости также увеличивается. Полоса пропускания контура скорости прямо пропорциональна скорости реакции. При увеличении усиления контура скорости шумы мотора также возрастают. Если усиление слишком велико, могут возникнуть осцилляции системы.

Интегральный коэффициент усиления контура скорости Kvi: при увеличении интегрального коэффициента усиления контура скорости интенсивность низких частот улучшается и время поправки установившегося состояния уменьшается; тем не менее, при слишком большом усилении интегрального коэффициента могут возникнуть осцилляции системы.

Шаги, необходимые для коррекции:

Шаг 1: Коррекция усиления контура скорости для расчета полосы пропускания контура скорости.

Перевести момент инерции нагрузки мотора в момент инерции вала мотора JI, а затем прибавить момент инерции самого мотора Jr для того, чтобы получить Jt = Jr + JI. Для расчета полосы

пропускания контура скорости Vc_Loop_BW необходимо подставить результат в следующую

формулу:

Vc_Loop_BW = Kvp *
$$\frac{I_p * K_t * Encoder R}{J_t * 204800000 * \sqrt{2} * 2\pi}$$

С учетом скорректированного коэффициента усиления контура скорости Кvp, необходимо только скорректировать Kvi в соответствии с действительными требованиями.

Введите поправку на влияние Кур и Куі, как показано на Рисунке 9-2.

Для поправки Кvp, см. с первого по четвертый слева на Рисунке 9-2. Кvp постепенно возрастает от первого к четвертому слева. Величина Kvi равна 0.

Для поправки Kvi, см. с первого по четвертый справа на Рисунке 9-2. Kvi постепенно возрастает от первого к четвертому справа. Величина Kvp остается неизменной.

2-ой слева

3-ий слева

2-ой справа

3-ий справа

	MWW	WWW		WWW	AMA W	WWW	\\\\
L 51/	101	151	201	251	301	351	401
www							

4-ый слева

4-ый справа

Рисунок 9-2 Схема коррекции усиления контура скорости

Шаг 2: Коррекция параметров фильтра обратной связи контура скорости

При поправке коэффициента усиления контура скорости, если шум мотора слишком велик, вы можете уменьшить значение параметра Speed_Fb_N для фильтра обратной связи контура скорости;

тем не менее, полоса пропускания F фильтра обратной связи контура скорости должна быть по крайней мере втрое шире полосы пропускания контура скорости, в противном случае могут возникнуть осцилляции. Следующая формула может быть использована для расчета полосы пропускания фильтра обратной связи контура скорости: F = Speed_Fb_N*20+100 (Гц).

2. Параметры контура положения

Численное	Имя переменной	Значение	Значение	Диапазон
значение			по	
			умолчанию	
d2.07	Крр	Пропорциональный коэффициент	1000	0~16384
		усиления контура положения Крр		
d2.08	К_Скорость_FF	0 означает отсутствие подачи	256	0~256
		вперед, и 256 означает 100% подачу		
		вперед		
d2.09	K_Acc_FF	Это значение обратно	7FF.F	32767~10
		пропорционально подаче вперед		
d0.05	Pc_Loop_BW	Устанавливает полосу пропускания	0	N/A
		контура положения в Гц		
d2.26	Pos Filter N	Set the average filter	1	1~255

Таблица 9-2 Параметры контура положения

Пропорциональный коэффициент усиления контура положения Крр: If пропорциональный коэффициент усиления контура положения increases, полоса пропускания контура положения is improved, thus reducing both the positioning time и ошибка рассогласованияs. Тем не менее, слишком широкая полоса пропускания может приводить к возникновению шума или даже осцилляций. Поэтому этот параметр следует настроить в соответствии с условиями нагружения. В формуле Крр=103* Pc_Loop_BW, Pc_Loop_BW обозначает полосу пропускания контура положения. Полоса пропускания контура положения меньше или равна полосе пропускания контура скорости. Рекомендуется устанавливать значение Pc_Loop_BW меньшее, чем Vc_Loop_BW /4 (Vc_Loop_BW обозначает полосу пропускания контура скорости).

Скорость подачи вперед контура положения К_Скорость_FF: скорость подачи вперед контура положения модно повысить для уменьшения ошибки рассогласования по положению. Когда сигналы положения не гладкие, при уменьшении скорости подачи вперед контура положения можно уменьшить осцилляции мотора при работе.

Обратная связь по ускорению контура положения K_Acc_FF (не рекомендуется изменять настройки этого параметра): если требуется большое усиление контура регулирования, необходимо скорректировать обратную связь по ускорению K_Acc_FF для улучшения производительности:

K_Acc_FF = $\frac{I_p * K_t * Encoder_R}{250000 * \sqrt{2} * J_t * \pi}$

Примечание: K_Acc_FF обратно пропорционален ускорению подачи вперед.

Шаги настройки:

Шаг1: Настройка пропорционального коэффициента усиления контура положения.

После настройки полосы пропускания контура скорости рекомендуется скорректировать Крр в соответствии с действительными требованиями (или напрямую заполнить требуемую полосу пропускания в Pc_Loop_BW, и привод автоматически рассчитает соответствующее значение Крр). В формуле Крр = 103*Pc_Loop_BW, полоса пропускания контура положения меньше или равна полосе пропускания контура скорости. Для общего случая, Pc_Loop_BW меньше, чем Vc_Loop_BW /2; для СNC системы рекомендуется устанавливать значение Pc_Loop_BW меньше, чем Vc_Loop_BW /4.

Шаг2: Скорректировать скорость подача вперед parameters контура положения.

Параметры скорости подачи вперед (как, например, K_Скорость_FF) контура положения настраиваются в соответствии с принятыми машиной ошибками по положению и жесткости муфтового соединения. Числу 0 соответствует 0% подача вперед, а 256 - 100% подача вперед.

3. Параметры коэффициента фильтрации импульсов

Kinco[®] Automation

Таблица 9-3 Па	раметры коэффиц	иента фильтрации и	импульсов
raomiga o o ria	pamorporna	nonna aprilibipadini i	

Численное	Имя	Значение	Значен	Диапазо
			ие по	
значение	переменной		умолча	н
			нию	
d3.37	PD_Filter	Используется для сглаживания входных импульсов.	3	1~32767
		Частота фильтра: f = 1000/(2π* PD_Filter)		
		Постоянная времени: T = PD_Filter/1000		
		Единица: сек.		
		Примечание: При настройке параметров этого		
		фильтра во время работы некоторые импульсы могут быть потеряны.		

9.2.2 Автонастройка (только для регулятора скорости)

Автонастройка возможна только для контуров скорости (для ручной настройки контуров положения см. Раздел 9.11), когда разрешено движение мотора как вперед, так и назад и нагрузка сильно не изменяется во время работы. Вы можете определить полный момент инерции нагрузок мотора через автонастройку усиления, и затем вручную ввести желаемую полосу пропускания. Привод автоматически рассчитает подходящие значения Кур и Kyi. Кривая движения имеет форму синусоиды, как показано на Рисунке 9-3.

Рисунок 9-3 Кривая скорости

K_Load обозначает внутренние данные, соответствующие реальной инерционности системы.

$$K_Load = \frac{I_p * K_t * Encoder_R*16}{62500*\sqrt{2}\pi * J_t}$$

В этой формуле:

Ір обозначает максимальный пик выходного тока, в амперах;

Кt обозначает постоянную момента мотора в Nm/Arms;

Encoder_R обозначает разрешение энкодера мотора в inc/r; и

Jt обозначает полный момент инерции мотора и нагрузок в kg*m^2.

Таблица 9-4 Параметры управления скоростью автонастройки

Численное	Имя	Значение	Значен	Диапазо
значение	переменной		ие по	н
			умолча	
			нию	
d0.06	Tuning Start	Автонастройка начинается поспе	0	1
40.00	Turning_Otart	установки этой переменной в 11. При	Ŭ	,
		автонастройке все входные сигналы		
		автонастройки		
		Установка других значений в эту		
		переменную прекращает автонастройку.		
d0.04	Vc_Loop_BW	Установка полосы пропускания контура	0	0~600
		скорости в Гц. Эту переменную можно		
		установить только по завершению		
		процедуры автонастройки; в противном		
		случае действительная полоса		
		пропускания будет установлена неверно,		
		что приведет к неправильной работе		
		привода. Если автонастройка был		
		неудачной, установка этого параметра		
		также может привести к неправильной		
		работе привода.		
		Примечание: Этот параметр неприменим		
		в отсутствие автонастройки.		
40.17	K Lood		1	20-1500
uz.17	K_LOad	Ооозначает нагрузочные параметры	1	20~1500
				0
d2.21	Sine_Amplitude	Увеличение этих данных уменьшит	64	0~1000
		ошибку настройки, но вибрации машины		
		усилятся. Эти данные можно настроить в		
		соответствии с действительными		
		условиями работы машин. Если		
		установка слишком мала, ошибка		
		автонастройки увеличивается, и даже		
		может привести к сбою		
d2.22	Tuning_Scale	Этот параметр полезен для уменьшения	128	0~16384
		времени автонастройки путем		
		уменьшения данных, но результат может		

Сервопривода серии JD

Kinco[®] Automation

		оказаться нестабильным.		
d2.23	Tuning_Filter	Обозначает параметры фильтра при автонастройке	64	1~1000

Автонастройка – это процесс, подходящее значение параметра K_Load рассчитывается автоматически. В режиме автонастройки вывод численных значений автоматически переключается в режим показа значения параметра K_Load в реальном времени. Когда значение параметра K_Load постепенно стабилизируется, привод автоматически настраивает значения Kvp и Kvi для контура скорости, так, чтобы действительная полоса пропускания контура скорости была равна 50Гц. Когда значение K_Load становится стабильным, привод автоматически завершает процедуру автонастройки; после этого необходимо подобрать значение параметра Vc_Loop_BW, представляющего желаемую полосу пропускания контура регулирования скорости. И наконец, запускается тест системы в действительных условиях и сохраняются параметры.

Предостережения

- Автонастройка применима когда разрешено вращение мотора как вперед, так и назад, и нагрузка сильно не изменяется во время работы. Когда вращение вперед или назад на устройстве недопустимо, рекомендуется настроить параметры вручную.
- 2. В процессе автонастройки импульсные сигналы, дискретные входные сигналы и аналоговые сигналы внешнего контроллера временно недоступны, поэтому нобходимо принять надлежащие меры безопасности.
- 3. Перед процедурой автонастройки рекомендуется подходящим образом настроить значения Кvp, Kvi и Speed_Fb_N (параметр фильтра обратной связи) для контура скорости, чтобы избежать видимых осцилляций, когда система работает в режиме управления скоростью. При необходимости скорректируйте данные d2.03 полосового фильтра для предотвращения резонанса.
- 4. Время, необходимое для настройки под разные нагрузки может быть разным, и обычно требуется несколько секунд. Время автонастройки можно уменьшить путем предварительной установки предполагаемого значения параметра K_Load, близкого к действительному значению.
- 5. Параметр Vc_Loop_BW может быть записан только после успешного окончания процедуры автонастройки, в противном случае привод может работать неверно. После записи желаемой полосы пропускания контура скорости в переменной Vc_Loop_BW, привод автоматически рассчитает соответствующие значения Kvp, Kvi и Speed_Fb_N. Если работа на низкой скорости покажется вам недостаточно ровной, вы можете вручную скорректировать значение Kvi. Заметьте, что автонастройка автоматически не настраивает данные полосового фильтра.

При следующих обстоятельствах необходимо скорректировать параметры автонастройки:

- Когда трение мотора изменяется в пределах оборота, необходимо увеличить амплитуду синусоиды d2.21 для уменьшения влияния неоднородного трения. Заметьте, что значение d2.21 увеличивается с увеличением амплитуды осцилляций нагрузки.
- 2. Если длительность автонастройки высокая, доступна первоначальная оценка полного момента инерции. Рекомендуется перед началом автонастройки устанавливать значение параметра К Load равным оценочному значению.
- 3. Если автонастройка нестабильна, ее стабильность возрастает с увеличением d2.22, но при

этом время автонастройка незначительно увеличивается.

при следующих обстоятельствах автонастройка может привести к ошибочным результатам. В этих случаях вы можете только произвести настройку вручную:

- 1. Момент инерции нагрузки подвержен большим флуктуациям.
- 2. Жесткость механического соединения низкая.
- 3. В соединениях между механическими элементами существуют зазоры и люфт.
- 4. Момент инерции нагрузки слишком высокий, в то время, как установлены низкие значения Кvp.
- 5. Если момент инерции нагрузки слишком высокий, а значение параметра K_Load менее 20; или если момент инерции нагрузки слишком низкий, а значение K_Load более 15000.

Рабочие шаги:

- Шаг1: Нажать **MODE** для того, чтобы зайти в Группу F002. Выбрать адреса объектов "d2.01", "d2.02" и "d2.05" соответственно, для начальных установок, чтобы не возникали сильные осцилляции при работе системы в режиме регулирования скорости.
- 2. Шаг2: Нажать **MODE** для того, чтобы зайти в Группу F000. Выбрать адрес объекта "d0.06", установить адрес 11, после чего начнется автонастройка.
- Шаг3: Нажать MODE для того, чтобы выбрать режим индикации параметров. Во время автонастройки на индикаторе будет показываться численное значение параметра K_Load в реальном времени.
- 4. Шаг4: Когда значение параметра K_Load стабилизируется, автонастройка будет завершена и значение "d0.06" автоматически изменится на 0.
- 5. Шаг5: Необходимо установить требуемую полосу пропускания контура скорости Vc_Loop_BW. В этом случае рекомендуется увеличивать полосу пропускания постепенно, пока машина не заработает в оптимальном режиме. Наконец, запустите систему в тестовом режиме в реальных условиях и сохраните параметры.

9.3 Предотвращение колебаний

Если при работе машины возникает резонанс, вы можете настроить полосовой фильтр для предотвращения резонанса. Если частота резонанса известна, вы можете напрямую установить значение параметра Notch_N равным (BW-100)/10. Заметьте, что необходимо установить значение Notch_On равным 1 до того, как будет разрешен полосовой фильтр. Если вы не знаете в точности резонансную частоту, можете сперва установить максимальное значение текущей инструкции d2.14 в низкое значение, чтобы амплитуда осцилляций находилась в приемлемом диапазоне, а затем попытаться скорректировать Notch_N, пока резонанс не прекратится.

При возникновении резонанса машины вы можете рассчитать значение резонансной частоты, используя функцию осциллографа привода и наблюдая кривую тока нагрузки.

Численная	Имя	Объяснение	Значение по	Диапа
индикация	переменной		умолчанию	зон
d2.03	Notch_N	Установка частоты полосового фильтра для	45	0~90
		цикла скорости.		
		Используется для установки частоты		
		внутреннего полосового фильтра, чтобы		
		устранить механический резонанс,		
		возникающий, когда мотор приводит в		
		действие машину. Для расчета		
		используется следующая формула: F =		
		Notch_N*10 + 100.		
	имя Ообяснение значение переменной умолчани Notch_N Установка частоты полосового фильтра для 45 цикла скорости. Используется для установки частоты 45 внутреннего полосового фильтра, чтобы устранить механический резонанс, 6 возникающий, когда мотор приводит в 45 45 цикло скорости. Возникающий, когда мотор приводит в 45 действие машину. Для расчета 45 45 используется следующая формула: F = Notch_N*10 + 100. 46 Например, если частота механического 45 46 Notch_N*10 + 100. 46 46 46 Используется следующая формула: F = 100 46 46 Использоратор следует установить 40. 46 46 46			
		резонанса F = 500 Гц, значение этого		
		параметра следует установить 40.		
d2.04	Notch_On	Включить/выключить полосовой фильтр	0	/
		0: Выключить полосовой фильтр		
		1: Включить полосовой фильтр		

Таблица 9-5 Настройка параметров по устранению резонанса

9.4 Пример отладки

9.4.1 Осциллограф

1. Открытие осциллографа

9.4.2 Порядок настройки параметров

1. Настройка скорости

(1) Отрегулируйте Кур в зависимости от нагрузки.

 Установите режим работы двигателя на Auto Reverse в положение (Operation mode -3), затем откройте осциллограф и установите параметры для наблюдения за кривой. Как показано наследующих рисунках.

⁽²⁾ Отрегулируйте Кvp и наблюдайте кривую скорости. На следующих рисунках показаны разные кривые с разными Kvp. В соответствии с кривыми, видно, что чем больше значение Kvp, тем быстрее скорость ответа.

(2) Отрегулируйте Kvi в зависимости от нагрузки.

(3) Отрегулируйте Speed_Fb_N чтобы снизить уровень шума.

Speed_Fb_N: Этот параметр используется для снижения шумов в системе. Но чем больше значение этого параметра, тем медленнее реакция системы.

В режиме Auto_Reverse, Kvp=40

KincoServo File Computer Driver Motor Extend View Help 🕞 🔚 🥵 🛶 👀 🐽 📢 m m Auto Reverse 2 I/O Port - E X name data unit Simulate Polarity Real Virtual Function 50000 DEC 1 Auto_Rev_Pos DIN1 driver enable 2 Auto Rev Neg -50000 DEC 3 Auto Reverse DEC DIN2 fault reset Peaition Loop data DIN3 operation mode 0 name unit 10.00 1 Крр Hz 0 DIN4 P control ... K_Velocity_FF 100.00 2 2 3 K_ACC_FF 32767 DEC 0 DINS NULL ۲ ----4 Pos Filter N DEC 1 5 Max Following Error 10000 inc DIN6 NULL **Velocity Loop** name data unit DIN7 homing signal ... 1 Kvp 40 DEC DINS NULL 2 Kvi 1 DEC ... 3 Notch N 550.00 Hz Function Simulate Polarity Real 4 Notch_On R DEC 5 Speed_Fb_N 240.000 HZ DOUT1 ready ... 0 **Pa** Basic Operate -DOUT2 NULL ... ۲ name data unit 1* Operation_Mode_Buff -3 DEC DOUT3 position reached+vel... 2* Status_Word HEX 4037 Pos Actual inc 3* 28907 DOUT4 zero velocity ... 4* Real_Speed_RPM 500 rpm 5* I_q 11 Ap DOUTS NULL ----**Operation** Mode DEC 6 -3 0.000 7 CMD_q Ap DOUT6 NULL ... ۲ 8 Pos_Target 0 inc SpeedDemand RPM 9 500 rpm DOUT7 motor brake ... 10 Control_Word HEX 21 11 Switch On Auto R DEC 12 CMD_q_Max 16.691 AD

Осциллограф отображается следующим образом: фактическая скорость отклика 33,88мс

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48 **Kinco**[®] Automation

В режиме Auto_Reverse, Kvp=110

Kinco[®] Automation

File Computer Driver Motor Exte	nd View Help	And a second beaution of		
- • • 1-1 🗠 🗟 🚽	-1 +1 🗂 🛄			
l/O Port		🔀 🕅 Reverse		[
Function Si	mulatePolarituRealVirtua	name	data	unit
		1 Auto_Rev_Pos	50000	DEC
DIN1 driver enable		2 Auto_Rev_Neg	-50000	DEC
saus fault warat		3 Auto Reverse	1	DEC
DIN2 Hault reset		Position Loop		
DIN3 operation mode		name	data	unit
		1 Крр	10.00	Hz
IN4 P control ···		2 K_Velocity_FF	100.00	%
		3 K_Acc_FF	32767	DEC
DINS NULL		4 Pos_Filter_N	1	DEC
DING NULL		Velocity Loop	10000	inc
haming cignal		name	data	unit
DIN/ numing signal		1 Kup	110	DEC
NULL		2 Kvi	1	DEC
		3 Notch_N	550.00	Hz
Function	Simulate Polarity Real	4 Notch_On	0	DEC
poura readu		5 Speed_Fb_N	240.000	Hz
0001113	 •	Reg Basic Operate		
DOUT2 NULL	🔳 🔳 🔹	name	data	unit
nosition reached+uel		1* Operation_Mode_Buff	-3	DEC
DOUT3 POSICION TEACHER OF	···· 🔲 📕 🛡	2* Status_Word	4437	HEX
South Zero velocity		3* Pos_Actual	4510	inc
DUUT4 Lette verserey		4* Real_Speed_RPM	500	rpm
DOULTE NULL	🔲 🔲 📥	5* I_q	4	Ap
000151		6 Operation_Mode	-3	DEC
DOUTA NULL	🔲 🔲 🜰	7 CMD_q	0.000	нр
		8 POS_Target	0	100
DOUT7 motor brake	••• 🔳 🔳 🜰	4 Speeubendnu_Krm	200	rpm
		11 Switch On Auto	8	DEC
		12 CMD n Max	16 691	An
		re onv_q_riax	10.071	uh

Осциллограф отображается следующим образом: фактическая скорость отклика 10,00мс

oscilloscope				
····	······································	mommun	·/····	600. 00000
400 00000				-600. 00000
12,5000	37, 5000	62. \$000	87.5000	112.5000 (ms
Canrate 4 250.002 vointer offset 50 Number of value 500 rigger on signal Speed_QEI_Back	s Channel 1 V Speed_Demand_ V 2 V V 3 V Speed_QEI_Bac V 4 V V	Scale 2e2 + -8 + rr 1e-6 + -8 + rr 2e2 + -8 + rr 2e2 + -8 + rr 2e2 + -8 + rr	nit Auto Cursor pm ▼ ♥ 0 - Curso ▼ ♥ 2 - Curso pm ▼ F Ch Id 0 ▼ Decrease v.	Time(us) Data(rpm) or 1 10.88 -504.0000 or 2 20.88 528.00000 alue 10.00 1032.0000
continue S	tart Reread		Export	Import

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48 www.systemcontrol.ru samara@systemcontrol.ru info@systemcontrol.ru

2. Настройка контура положения

(1) Настройте Крр

(2) Hacтройте Vff (K_Velocity_FF)

Отрегулируйте параметр Vff в соответствии с допустимой погрешностью по положение и исполнения связи с машиной. Обычно Vff составляет 100%. Если система не нуждается в высокой скорости отклика для позиционирования то этот параметр можно уменьшить, чтобы уменьшить перерегулирование.

(3) Используйте осциллограф для наблюдения кривой.

Установить режим работы двигателя на Auto_Reverse по времени (Режим работы 3), установите параметры осциллографа как показано на следующем рисунке.

На Рис.(1) и Рис.(2), Vff = 100%. Когда Крр = 30, отклик контура положения быстрее, чем, когда Крр = 10. Между тем следующая ошибка также меньше, но перерегулирование больше. На Рис.(3) Крр составляет 30, Vff составляет 50%. Сравните с рис. (2), следующее сообщение об ошибке больше, но скорость ответа становится медленнее и почти нет перерегулирования. Режим Внутренняя позиция, конечная позиция является 50000 вкл.

Рис.(1) Крр=10,Vff=100%

	i +i 🗂 🔟				
💡 I/O Port	- (2 P	oaition Loop		
Function S	imulatePolarityRealVir	ual	name	data	unit
DIN1 driver enable		1	Kpp K Velocitu FF	10.000	Hz %
DIN2 fault reset		3	K_ACC_FF Ros Filter N	32767	DEC
DIN3 operation mode		5	Max_Following_Error	10000	inc
nuu actius command		2 V	elocity Loop		
DIN4 accive command			name	data	unit
DINS NULL		1	Kup	150	DEC
		2	Kui	4	DEC
DING NULL ···		3	Notch_N	550.000	Hz
		4	Notch On	0	DEC
DIN7 homing signal ···		5	Speed Fb N	240.000	Hz
		6	Speed_Mode	0	DEC
DIN8 NULL		Re Ba	asic Operate		
Function	Simulate Polarity Re	1	name	data	unit
poura readu		1*	Operation Mode Buff	1	DEC
000111		2*	Status Word	5037	HEX
NULL	- I 🔲 🗐 🍙	3*	Pos_Actual	14224	inc
000121		4*	Real_Speed_RPM	474	rpm
pours position reached+ve	a 🔳 🔳 🍙	5*	I_q	0.134	Ap
00013 F		6	Operation_Mode	1	DEC
DOUTH ZERO VELOCITY	🔲 💼 🙍	7	CMD_q	0.000	Ap
000141		8	Pos_Target	50000	inc
DOUTS NULL	🔳 🔲 🍙	9	SpeedDemand_RPM	0	rpm
		10	Control_Word	3f	HEX
DOULTA NULL	🔲 🔳 🍙	11	Switch_On_Auto	0	DEC
000101		12	CMD_q_Max	16.691	Ap
DOUTZ motor brake		13	Profile Speed	500.000	rpm

Осциллограф выглядит следующим образом: макс. следующая ошибка составляет 69 inc.

Рис.(2) Крр=30,Vff=100%

ncoServo						- 980 M	
<u>Computer</u> Driver Motor	xtend <u>V</u> iew <u>H</u>	<u>t</u> elp					
• 0-1 🗠 🖻 🚽	+ <u>=</u> + <u>=</u> [
2 1/O Port							
Function	SimulateP	Polaritu Real Virtual		action Loop		Lunit	
DINI driver enable			1	Kon	30.000	HZ	_
Millar Iver chabite			2	K Velocity FF	100.000	8	
DIN2 fault reset	🔳		3	K_ACC_FF	32767	DEC	_
			4	Pos_Filter_N	1.000	DEC	
DIN3 operation mode			5	Max_Following_Error	10000	inc	
arun acting command			29 Vel	locity Loop			
DIN4 accive command				name	data	unit	
DINS NULL			1	Kup	150	DEC	
			2	Kui	4	DEC	1
DIN6 NULL			3	Notch_N	550.000	Hz	
			4	Notch_On	0	DEC	
DIN7 homing signal			5	Speed_Fb_N	240.000	Hz	
			6	Speed_Mode	0	DEC	
DINS NULL	··· 🗖		💦 Bas	iic Operate			
Function	Simu	late Polarity Real		name	data	unit	
DOUT1 ready			1*	Operation_Mode_Buff	1	DEC	
			2*	Status_Word	4437	HEX	
DOUT2 NULL	[3*	Pos_Actual	50000	inc	
50.3. 2. N / V3			4*	Real_Speed_RPM	0	rpm	
DOUT3 position reached	d+vel		5*	I_q	0.121	Ap	
			6	Operation_Mode	1 Summer	DEC	
DOUT4 zero velocity			7	CMD_q	0.000	Ap	-
lane a			8	Pos_larget	50000	100	1
DOUTS NULL			10	Speedvemand_KPM	96	rpm	
harr 1			10	Switch On Auto	8	DEC	
DOUT6 MULL			12	CMD a May	16 601	0D	
nours motor bush-	1 1		13	Profile Sneed	500 000	rom	
DUDI7 MUCUP Drake				Literine_speed	200.000		

Осциллограф выглядит следующим образом: макс. следующая ошибка составляет 53 inc.

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

Рис.(3) Крр=30, Vff=50%

	-01-00							
1/0 Port				Dec				-
Function	Simulate	Polarity Real	Virtual	Poa		data	unit	
DIN1 driver enable	🗖	•	•		Kpp	30.000	Hz	
IN2 fault reset	🔳	•	• 3	3	K_ACC_FF	32767	DEC	-
IN3 operation mode	🔳			+	Pos_Filter_N Max_Following_Error	1 10000	DEC	
				Vel	ocity Loop	101092		
IN4 active command			. IF		name	data	unit	
INS NULL	🔳			Į	Kup	150	DEC	Τ
IN6 NULL	🔳	•		3	Notch_N	4 550.000	Hz	_
TNZ homing signal					Notch_On Sneed Fb_N	0 240,000	DEC	
			i i	5	Speed_Mode	0	DEC	_
IN8 NULL	··· 🗖			Basi	ic Operate		-	
Function	Simu	late Polarity	Real		name	data	unit	
DOUT1 ready				*	Operation_Mode_Buff	1	DEC	
NULL				*	Status_word Pos Actual	5037	Inc	
DOUT2 MOLL				*	Real Speed RPM	2	rpm	
DOUT3 position reache	d+vel		• 5	*	I_q	0.000	Ap	
			6		Operation_Mode	1 8 868	DEC	
DOUT4 Zero Velocity					Pos Target	50000	inc	1
DOUTS NULL	[SpeedDemand_RPM	0	rpm	-
NULL				1	Switch_On_Auto	3+	DEC	
0010			1	2	CMD_q_Max	16.691	Ap	
DOUTZ motor brake	1070		<u> </u>	3	Profile_Speed	500.000	rpm	

Осциллограф выглядит следующим образом: макс. следующая ошибка составляет 230 inc.

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

Глава 10 Связь

JD Servo поддерживает мощные коммуникационные возможности. Все органы управления сводятся к конфигурации внутренних объектов. Конфигурация может быть реализована несколькими способами, включая RS232, RS485 и CANopen. Он поддерживает подключение нескольких узлов и одновременной работы нескольких портов связи. Обратите внимание:

1. DIN1 устанавливается как функция включения привода и DIN3 устанавливается как функция управления режимом работы по умолчанию. Перед использованием управления по средствам связи, отмените функции этих двух DIN.

2. Есть внутренний блок и инженерное блок. Все параметры используют внутренний блок при управлении по средствам связи, поэтому нужно преобразовать блок. О более подробной информации о взаимосвязи блоков см. в Приложении.

3. Когда используете чтение/запись функции SDO с помощью CANopen, RS232 и RS485 убедитесь, что одновременно выполняется только одна команда, и установлена бесперебойная связь, что бы избежать зависания системы.

10.1 Интерфейс RS232

10.1.1 Подключение интерфейса RS232

Схема подключения между ПК и одним сервоприводом JD выглядит следующим образом:

PC	JD	Servo RS232(X3)
2 RxD		TXD 2
3 TxD		RXD 3
5 GND		GND 5

Схема подключения между ПК и несколькими сервоприводами JD выглядит следующим образом: (D05.15 должен быть установлен 1, после этого перезапустите сервопривод)

Примечание: 1. Используйте такую же схему подключения JD сервопривода с HMI панелями или контроллерами (расположение контактов HMI панелей или контроллеров может отличаться от ПК) 2.При подключении нескольких JD сервоприводов, все получат команду одновременно.

10.1.2 Параметры связи RS232

Номер	Внутренний	Название	Значение	Исходное
параметра	адрес			значение
d5.00	2FF00108	Store_Loop_Data	1: Сохраняет все параметры управления,	0
			кроме параметров двигателя	
			10: Сброс всех настроек	
			кроме параметров двигателя	

d5.01	100B0008	ID_Com	Номер привода на станции Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить.	1
d5.02	2FE00010	RS232_Bandrate	Устанавливает скорость передачи последовательного порта 540: 19200 270: 38400 90: 115200 Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить.	270
d5.15	65100B08	RS232_Loop_Enable	0: 1:1 1: 1:N Примечание: Необходимо перезагрузить привод после изменения этого параметра.	0
Другие па	раметры	•	Бит данных = 8 Бит стоп = 1 Чётность = None	Constant

10.1.3 Транспортный протокол

RS-232 для подключения к компьютеру сервопривода JD строго следует протоколу велущий/веломый. Главный компьютер может посыдать данные на сервопривод. Привод и

ведущий/ведомый. Главный компьютер может посылать данные на сервопривод. Привод настроен со своим номером в сети обрабатывает эти данные и отправляет ответ.

Этот протокол RS232 использует пакет данных с фиксированной длинной из 10 байт.

byte 0		byte 9
ID	8 byte data	CHKS

ID является идентификационный номер ведомого

CHKS = - SUM(byte0,...,byte8), CHKS является самым низким байтом результата вычисления. Главный компьютер делает запрос:

byte 0		byte 9
ID	8 byte host data	CHKS

Когда D5.15 равно 0, серврпривод JD отправляет:

byte 0		byte 9
ID	8 byte slave data	CHKS

Когда D5.15 равно 1, серврпривод JD отправляет:

byte 0		byte 9	byte 0		byte 9
ID	8 byte host data	CHKS	ID	8 byte slave data	СНКЅ

Примечание: Каждый пакет из 10 байт имеет свой собственный CHKS.

Если компьютер посылает ID не существующего в сети привода, ни один привод не сделает ответ. Если компьютер посылает данные правильно, ведомый принимает пакеты данных в соответствии с собственным ID и проверяет значение CHKS. Если контрольная сумма не совпадает, ведомый не сделает ответ.

10.1.3.1 Протокол данных

Протокол данных отличается от транспортного протокола. Он содержит 8 байт вместо 10 байт. Описание внутренних данных сервопривода соответствует требованиям международного стандарта CANopen. Все параметры, значения и функции выражаются индексом и субиндексом.

А:Загрузка. Компьютер посылает команду на запись значения в адрес в ведомого, и компьютер выдает сообщение об ошибке, если значение загружается в несуществующий объект. Запрос:

byte0	bytel	byte2	byte3	byte4	byte5	byte6	byte7
CMD	INI	EX	SUB INDEX		DA	TA	

CMD	Определяет направление передачи данных и объема данных.
23(0x16)	Передает 4-байта данных (байт 4 7 содержат 32 бита)
2b(0x16)	Передает 2-байта данных (байт 4, 5 содержат 16 бит)
2f(0x16)	Передает 1-байта данных (байт 4 содержат 8 бит)
INDEX	Индекс объекта, куда должны быть отправлены данные
SUB INDEX	Полнлекс объекта, кула должны быть отправлены данные

Во всех четырех байтах данных, биты низшего порядка расположены перед битами высшего порядка. Чтобы написать 7650 в "Target Position" ведомого, адрес 607А0029, 7650 в десятичной системе счисления, а 1DE2 находится в шестнадцатеричной системе. Так как длина объекта, который будет записан в 4 байта и результат вычисления 1D E2 имеет только 2 байта, ноль должен быть заполнен битами высшего порядка. Таким образом, окончательный результат = 00 00 1D E2.

DATA: byte4=E2 byte5=1D

byte6=00 byte7=00

Ответ:

	byte0	byte l	byte2	byte3	byte4	byte5	byte6	byte7	
	RES	INE	EX	SUB INDEX		RESE	RVED		
RES: Отображает ответ ведомого: 60(0x16) Данные успешно отправлено 80(0x16) Ошибка, байт 4 7 содержат причину ошибки INDEX 16-битное значение, такое же, как посланное ведущим SUBINDEX 8-битное значение, такое же, как посланное ведущим RES Зарезервировано									
11 3a	ример: апрос:								
01 0 ⁻ 01	01 23 7A 60 00 E2 1D 00 00 03 (Эта команда для записи данных в конечное положение 607A0020) Ответ: 01 60 7A 60 00 E2 1D 00 00 C6								
C	Состояние:								
60 60 by	— помер)— Данны /te4=E2,b	привода в e успешно oyte5=1D, b	отправленн оуte6=00, b	и и сохране yte7=00	ны в byte4.	byte5			
За	тем, DATA	= byte7 byte	e6 byte5 byte	e4 = 1DE2(hex) =7650	inc			

В: Загрузка. Загрузка означает то, что мастер посылает команду для чтения объекта по адресу ведомого и мастер выдаст ошибку, если не существует адреса загрузки.

Запрос:

byte0	bytel	byte2	byte3	byte4	byte5	byte6	byte7
CMD	INE	EX	SUB INDEX		RESE	RVED	

СМD Определяет направление передачи данных

40(0x16)

INDEX 16-битное значение

SUBINDEX 8-битное значение

RESERVED Байты 4 ... 7 не используется

Ответ:

byte0	bytel	byte2	byte3	byte4	byte5	byte6	byte7
RES	INE	EX	SUB INDEX		DA	TA	

RES Отображает ответ ведомого:

43(0x16) байт 4 ... 7 содержат 32-битные данные

4B(0x16) байт 4, 5 содержат 16-битные данные

4F(0x16) байт 4 содержит 8-битные данные

80(0x16) ошибки, байт 4 ... 7 содержат причину ошибки

INDEX 16-битное значение, такой же, как посланная ведущим

SUBINDEX 8-битное значение, такой же, как посланная ведущим

Если данные не содержат ошибок, то байт 4 ... байт 7 сохраняет значение объекта ответа ведомого, с битами низшего порядка, расположенных перед битами высшего порядка. Правильное значение = byte7, byte6, byte5, byte4. Если есть ошибка, данные, содержащиеся в этих четырех битах, считанные из ведомого устройства, не засчитывются.

Пример:

Запрос:

01 40 7A 60 00 00 00 00 00 E5 (Эта команда для считывания данных из заданного положения 607A0020) **Ответ:**

01 43 7A 60 00 E2 1D 00 00 E3

Means:

01-Station No. of slave is 1

43-Receive 4 bytes of data and save into byte4...byte5.

byte4=E2, byte5=1D, byte6=00, byte7=00

Затем, DATA= byte7 byte6 byte5 byte4 = 1DE2 (hex) =7650 inc

10.2 Интерфейс RS485

10.2.1 Подключение интерфейса RS485

Интерфейс X2 сервопривода JD поддерживает связь по RS485 и RS422. Схема подключения приведена на следующем рисунке.

RS485

10.2.2 Параметры связи RS485

Номер Параметра	Название	Значение	Значение по умолчанию
d5.01	ID_Com	Номер привода в сети Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить	1
d5.16	RS485_Bandrate	Настройка скорости передачи данных порта RS232 1080 9600 540 19200 270 38400 90 115200	540
		Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить	
Другие параметры		Бит данных = 8 Бит стоп = 1 Чётность= None	Constant

10.2.3 MODBUS RTU

RS485 интерфейс сервопривода JD поддерживает протокол Modbus RTU. Формат протокола Modbus RTU Начало (Не менее 3.5. Station Function Data CRC

Пачало (пе менее 3,3	Station	FUNCTION	Dala	CRC
символов интервала	No.	code		
между сообщениями)	1 Byte	1 Byte	N Bytes	2 Bytes

Код функции Modbus

0х03: Чтение регистров данных

Формат запроса:
	Station No.	Function Code	High Byte of Start Address	Low Byte of Start Address	High byte of Address Length (Word)	Low byte of Address Length (Word)	CRC check
	1 Byte	03	1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes
n	мат ответа.						

Формат ответа:

Station	Function	Return data	High byte of	Low byte of	 CRC
No.	Code	length(Bytes)	Register 1	Register 1	check
1 Byte	03	1 Byte	1 Byte	1 Byte	 2 Bytes

Если есть ошибки, такие как не существующий адрес, то он вернется с функциональным кодом 0x81. Например: Отправить сообщение <u>01 03 32 00 00 02 СА В3</u>

Значение:

01: Номер

03: Код функции: чтение данных регистров

32 00 : Чтение адреса, начиная с 4x3200 (Hex). Это адрес Modbus, соответствующий параметру "Status_word" (60410010)

00 02: Чтение 2 слова данных

СА ВЗ: Проверка CRC

0х06: Запись одного регистра данных

Формат запроса:

Station No.	Functi on Code	High Byte of Register	Low Byte of Register	High byte of writing value	Low byte of writing value	CRC check
1 Byte	06	1 Byte	1 Byte	1 Byte	1 Byte	1 Bytes

Если есть ошибки, такие как не существующий адрес, то он вернется с функциональным кодом 0х86.

Например: Отправить сообщение <u>01 06 31 00 00 0F C7 32</u>

Значение:

01: Номер

06: Код функции, написать одно слово

- 31 00: Modbus адрес для записи данных, соответствующий параметру "control word" (60400010)
- 00 0F: Написать данные 000F (Hex)
- С7 32: Проверка CRC

0х10: Запись нескольких регистров

Формат запроса:

Station No.	Function Code	High Byte of Start Address	Low Byte of Start Address	High byte of Address Length (Word)	Low byte of Address Length (Word)	Data length (Bytes)	High byte of Data 1	Low byte of Data 1	 CRC check
1 Byte	10	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	 2 Bytes

Формат ответа:

Station No.	Function Code	High Byte of Start Address	Low Byte of Start Address	High byte of Address Length (Word)	Low byte of Address Length (Word)	CRC check
1 Byte	10	1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes

Если есть ошибки, такие как не существующий адрес, то он вернется с функциональным кодом 0x90.

Например: Отправить сообщение 01 10 6F 00 00 02 04 55 55 00 08 1A 47

Значение:

01: Номер 10: Код функции, написать несколько слов 6F 00: Modbus адрес для записи данных, соответствующий параметру "Target Velocity" (60FF0020) Длина адреса составляет 2 слова. 00 02: Длина данных составляет 4 байта (2 слова) 04: 55 55 00 08: Запись данных 00085555 (Hex) в адрес. 1A 47:

Проверка CRC

10.3 Интерфейс СА Nopen

Серия сервоприводов JD поддерживает стандарт САN (ведомого устройства), строго придерживаясь пртокола CANopen2.0A /B, любой хост-компьютер, который поддерживает этот протокол может общаться с ним. Привод JD пользуется строго определенным списком объектов, мы называем это словарь объектов, конструкция, которого, основана на международных стандартах CANopen, все объекты имеют четкое определение функции. Некоторые объекты, такие как скорость и положение, могут быть изменена с помощью внешнего контроллера, некоторые объекты изменяются только самим приводом, например, состояние и сообщения об ошибках.

Этими объектами являются следующие:

Например:

Index	Sub	Bits	Attribute	Meaning
6040	00	16(=0x10)	RW	Control word
6060	00	8(=0x08)	RW	Operation mode
607A	00	32(=0x20)	W	Target position
6041	00	16(=0x10)	MW	Status word

Атрибутами объектов являются:

1. RW: Объект может быть как прочитан, так и написан.

- 2. RO: Объект предназначен только для чтения.
- 3. WO: Объект предназначен только для записи.
- 4. М: Объект может отображать.
- 5. S: Объект может храниться на флэш-диске без потери после сбоя питания..

10.3.1 Описание устройства

САN протокол связи описывает способ передачи информации между устройствами, по определению СAN уровень является таким же, как и у открытых систем модели OSI, каждый слой взаимодействует с тем же слоем в другом устройстве, фактическая передача происходит в соседних слоях каждого устройства, но устройства соединены только путем физической среды на физическом уровне модели. Стандартные данные CAN определяют канал связи слоя и физический уровень в модели. Физический уровень СAN не является обязательным, он может использовать различные физические носители, такие как витая пара Волокно. аще всего используется сигнальная витая пара. Две сигнальных линии называются CAN_H и CAN_L. Статическое напряжение составляет примерно 2,5V, это состояние выражается в виде логической 1, также называемый скрытый бит. Логический 0 считается, когда CAN_H выше, чем CAN_L, мы назвали его видимый бит, напряжение которых CAN_H = 3.5V и CAN_L = 1,5, видимый бит с высоким приоритетом.

Стандартный интерфейс CAN изображён на следующем рисунке:

Контакт	Название	Описание
1	NC	Зарезервировано
2	CAN_L	CAN_L bus(низкий приоритет)
3	CAN_GND	САN земля
4	NC	Зарезервировано
5	CAN_SHLD	Дополнительный экран САN
6	GND	Дополнительная земля
7	CAN_H	CAN_H bus (высокий приоритет)
8	NC	Зарезервировано
9	CAN_V+	NC

• Примечание:

- 1. Все САЛ_L и САЛ_Н ведомых устройств подключеные последовательно, не начинают соединение.
- 2. Необходимо подключать сопротивление 120 Ом в начале клемма master и в конце клемма slave.
- 3. Все сервопривода JD не требуют внешнего источника 24 В постоянного тока для интерфейса CAN.
- 4. Для подключения используйте экранированные кабели связи, и хорошее заземление. (Контакт 3 рекомендуется заземлять, когда передача данных осуществляется на дальние расстояния и высокой скоростью.
- 5. Максимальное расстояние на различных скоростях передачи данных приведены в таблице:

Скорость	Расстояние
1Mbit/s	25M
800Kbit/s	50M
500Kbit/s	100M
250Kbit/s	250M
125Kbit/s	500M
50Kbit/s	600M
25Kbit/s	800M
10Kbit/s	1000M

10.3.2 Краткое описание прграммы

10.3.2.1 EDS

EDS (Electronic Data Sheet) файл данных являющийся идентификационным документом ведомого устройства, чтобы определить, каким устройством является ведомый. Этот файл содержит всю информацию ведомых устройств, например, производителя, порядковый номер, версия программного обеспечения, поддерживаемая скорость передачи данных, графические объекты OD и атрибуты каждого OD и так далее, похожих на файл GSD для Profibus. Таким образом, мы должны импортировать файл EDS ведомого устройства в программное обеспечение мастера прежде чем мы настроим оборудование.

10.3.2.2 SDO

SDO используется в основном в передающими объект устройствами с низким приоритетом, которые обычно используются для настройки и управления устройством, например, изменения параметров ПИД в токовой петли, петли скорости и контура положения и параметров конфигурации PDO и так далее. Этот режим передачи данных такой же, как Modbus, т.е. он должен получить ответ от ведомого устройства, когда мастер отправляет данные. Этот режим связи предназначен для установки параметров, а не для постоянной передачи данных.

SDO включает в себя загрузку и скачивание. Основное приложение может использовать специальные инструкции SDO, чтобы читать и писать на OD сервопривода. В протоколе CANopen, мы можем использовать SDO для изменения содержания Object_Dictionary, Далее рассмотрим структуру стандартной команды SDO:

Базовая структура SDO: Client-Server/Server-Client

Byte0	Byte1-2	Byte3	Byte4-7
SDO	Index of	Sub-index of	Four bytes of data at most
Command specifier	Object	Object	Four bytes of data at most

SDO команда содержит следующую информацию:

Download / upload

Request /response

Segmented / expedited transfer

Длина байта данных CAN, используется для переключения бита каждого сегмента.

SDO выполняет 5 протоколов запросов / ответов

(1) Initiate Domain Download ;(2) Download Domain Segment ;(3) Initiate Domain Upload ;(4) Upload Domain Segment;(5) Abort Domain Transfer;

§ Download подразумеваются операция записи Object_Dictionary; Upload Означает операцию чтения Object_Dictionary.

§ Грамматика и детали ŠDO командного слова (первый байт в CAN сообщении SDO) объясняется следующим образом: ("-" не имеющий отношения, должен быть 0)

§ при чтении параметров, используйте протокол Initiate домена Загрузить

§ при установке параметров, используйте протокол Initiate домена Скачать

Загрузка домена										
Bit 7 6 5 4 3 2 1 0										
Client→	0	0	1	-	n		е	S		
←Server	0	0	1	-	-	-	-	-		

Описание:

n: означает количество байтов незначительных данных в сообщении [Данные из байта (8-п) в седьмом байте данных незначительны] (n эффективен при е = 1 и s = 1 или n = 0).

е: обычная передача, когда е = 1, ускоренная передача при е = 0

- s: указывается ли длина данных, когда S = 0 это означает, что длина данных не указывается, S = 1 означает, что длина данных указана.
- е=0, s=0: зарезервировано CiA
- e=0, s=1: байт данных это байт калькулятор, байт 4 является младшим битом (LSB), байт 7 является наиболее значащим битом (MSB)

е=1: Байт данных это данные, которые будут загружены

	Initiate Domain Download										
Bit	7	6	5	4	3	2	1 0				
Client→	0	0	1	-	-	-	-	-			
←Server	0	0	1	-	r	ſ	е	S			

Пример:

※ Чтение параметров

отправлять сообщения SDO

Identifier				Да	анные				
	DLC	0	1	2	3	4	5	6	7
0x600+Node_ID	8	Send command word	Inde Obj	ex of ject	Subindex of object		0	0	

принимать сообщения SDO

Idoptifier		Данные							
identillei	DLC	0	1	2	3	4	5	6	7
0x580+Node_ID	8	Send command word	Inde Ob	ex of ject	Subindex of object		*	*	

(четыре байта данных)

※ Примечание: Все командное слово 0х4, когда _SOD отправляет сообщение Если данные передаются по одному байту, то получение командного слова 0х4F Если данные передаются на два байта, то получение командного слова 0х4B Если данные передаются на три байта, то получение командного слова 0х43

※ При изменении параметров отправлять сообщония SDC

отправлять сообщения SDO

Identifier		Данные								
identifier	DLC	0	1	2	3	4	5	6	7	
0x600+Node_ID	8	Send command word	Index of Object		Sub-index of object		*	*		

(четыре байта данных)

принимать сообщения SDO

Identifier		Данные								
identiner	DLC	0	1	2	3	4	5	6	7	
0x580+Node_ID	8	Send command word	Index of Object		Sub-index of object		*	*		

※ Примечание: При получении SDO сообщения, командное слово 0x60 означает правильное написание, если 0x80, означает ошибку.

Если данные передаются по одному байту, то отправка командного слова 0x2F Если данные передаются на два байта, то отправка командного слова 0x2B Если данные передаются три байта, то отправка команды слово 0x23

10.3.2.3 PDO

Kinco[®] Automation

ПДО может пересылать 8 байт данных в одно время, и никаких других протоколов, он будет в основном использоваться для передачи данных на высокой частоте. PDO использует совершенно новый режим для обмена данными, он должен определить прием данных и область отправки перед перед передачей между двумя устройствами, тогда данные будут передаваться в зону приема устройства непосредственно при обмене данными. Это значительно повысить эффективность и использование связи.

PDO COB-ID

COB-ID является уникальным способом протокола связи CANopen, это сокращённое обозначение Communication Object Identifier. COB-ID определяет соответствующие уровни передачи для PDO, Это транспортный уровень, контроллер и сервопривод может быть сконфигурирован по тому же уровню передачи и содержание передачи в соответствующем программном обеспечении. Тогда обе стороны знают содержимое передаваемых данных, нет необходимости ждать ответа, что бы проверить, является ли передача данных успешной или нет.

Таблица размещения ID основана на CAN-ID (11 бит), определенной в CANopen 2.0A. COB-ID CANopen2.0B протокол составляет 27 бит, включает код функции (4 бита) и Node-ID (7 бит), как показано на следующем рисунке:

Node-ID определяется системными интеграторами, такой настройки переключателя DIP на устройствах (например, № сервопривода). Диапазон Node-ID 1 ~ 127 (0 запрещено). Function_Code: Код функции для передачи данных определяет уровень передачи PDO, SDO и сообщения управления. Чем меньше код функции, тем выше приоритет. Таблица размещения идентификаторов CAN в Master/slave с комплектом подключений заранее определён CANopen выглядит следующим образом:

Объекты передачи.			
Объект	Функциональный код (ID-bits 10-7)	COB-ID	Индекс параметра связи в ОД
NMT модуль управл.	0000	000H	-
SYNC	0001	080H	1005H,1006H, 1007H
TIME SSTAMP	0010	100H	1012H, 1013H
Связь объектов.			
Объект	Функциональный код (ID-bits 10-7)	COB-ID	Индекс параметра связи в ОД
Аварийное	0001	081H-0FFH	1024H, 1015H
РDO1(Отправляет)	0011	181H-1FFH	1800H
РDO1(Получает)	0100	201H-27FH	1400H
РDO2(Отправляет)	0101	281H-2FFH	1801H
РDO2(Получает)	0110	301H-37FH	1401H
РDO3(Отправляет)	0111	381H-3FFH	1802H
РDO3(Получает)	1000	401H-47FH	1402H
РDO4(Отправляет)	1001	481H-4FFH	1803H
РDO4(Получает)	1010	501H-57FH	1403H
SDO(Send/Server)	1011	581H-5FFH	1200H
SDO(Receive/Client)	1100	601H-67FH	1200H
NMT ошибка управл.	1110	701H-77FH	1016H-1017H

Примечание:

1. Чем меньше COB-ID, тем выше приоритет.

2. Функциональные коды COB-ID в каждом уровне закреплены.

3. COB-ID 00H, 80H, 100H, 701H-77FH, 081H-0FFH являются форматом системы управления.

СОВ-ID поддерживается в JD сервоприводах:

Отправка РОО (ТХРОО)

Отправка PDO сервопривода означает, что сервопривод посылает данные, и эти данные принимаются PLC. Далее представлены функциональные коды отправки PDO (COB-ID):

- 1、 0x180+Station No. of Servo
- 2、 0x280+ Station No. of Servo
- 3、 0x380+ Station No. of Servo
- 4、 0x480+ Station No. of Servo

■ Получение PDO (RXPDO)

Прием PDO из сервопривода означает, что сервопривод получает данные, и эти данные направляются на ПЛК. Далее представлены функциональные коды получения PDO (COB-ID):

- 1、 0x200+ Station No. of Servo
- 2、 0x300+ Station No. of Servo
- 3、 0x400+ Station No. of Servo
- 4、 0x500+ Station No. of Servo

Сервопривод JD разработан в соответствии со стандартом протокола CANopen 2.0A, а также поддерживает протокол CANopen 2.0B. Поэтому, если 8 PDO не хватает, пользователи могут назначить новый PDO, например, установить 0х43FH как связь PDO со Станцией № 1, но для этого нужно, что бы контроллер и сервопривод определялся PDO по тому же правилу.

РDО типы передачи:

РDO поддерживает два режима передачи:

■ SYNC: Передача запускается сообщением синхронизации (Тип передачи:0 - 240) В этом режиме передачи, контроллер должен иметь возможность отправлять синхронные сообщения (сообщение периодически отправляется при максимальной частоте 1 кГц), и сервопривод отсылает, после получения, синхронное сообщение.

Ациклические: Предварительно дистанционно запускается кадр, или определенное событие объектов заданного оборудования суб-протокола. В этом режиме сервопривод отправит данные, после получения данных синхронного PDO сообщения.

Циклическая: Срабатывает после отправки 1 в 240 SYNC сообщения. В этом режиме сервопривод отправит данные в PDO после получения сообщения SYNC.

■ ASYNC (Тип передачи: 254/255):

Ведомый посылает сообщение автоматически, после изменения данных, можно определить интервал времени между двумя сообщениями, которые могут быть отправлены с более высоким приоритетом постоянно отправляемых сообщений. (Чем меньшее число PDO, тем выше его приоритет).

РDО Блокировка Времени:

В каждом ПДО можно определить время запрета, то есть минимальный временной интервал между двумя непрерывными передачами PDO. Он используется, чтобы избежать PDO с более высоким приоритетом всегда занимающего связь. Время запрета составляет 16bit целого числа без знака, единица деления 100мс.

Режим защиты (Вид контроля)

Вид Контроля заключается в выборе, какой способ мастер использует для проверки ведомого во время работы, и проверяет, отображает ли ведомый ошибку или нет, и обрабатывает ошибку. ■ Сообщение запрос/ответ: Ведомый отправляет сообщение ведущему циклически во время контроля. Если мастер не получил сообщение от ведомого после контрольного времени, то мастер будет считать ведомого как ошибку.

Фрмат сообщения: (0x700+NodelD)+Status Состояние:

0: Старт 4: Стоп 5: Вращение 127: Предэксплуатационный

■ Узел Охрана: Ведомый отправляет сообщение ведущему цеклическически во время контроля. Если мастер не получил сообщение от ведомого после контрольного времени, то мастер будет рассматривать ведомого как ошибку.

Формат сообщения запроса мастера:

(0x700+NodelD) (В этом сообщении нет данных)

Формат ответного сообщения ведомого:

(0x700+NodeID) +Status:

Состояние:

Бит 7 из данных бит запуска. Этот бит будет поочередно установлены в 0 или 1 в ответном сообщении. Он будет установлен в 0 в первом запросе узла охраны. Бит0 ~ бит6 показывают состояние узла.

Статус: 0: Инициализация 1: Нет подключения 2: Connection 3: Эксплуатационные 4: Остановите 5: Выполнить 127: Предэксплуатационные

Обычно стандартный _CAN ведомого поддерживает только один режим защиты, но JD сервопривод может поддерживать оба.

Процесс загрузки

Процесс загрузки показан на следующем рисунке.

Примечание:

▶ Буквы в скобках означают объекты, которые могут использоваться в этом состоянии:

a. NMT , b. Node Guard , c. SDO , d. Emergency , e. PDO , f. Boot-up

- ▶ Состояние перехода (1-5 отправляется сервисом NMT), команда NMT, как показано в скобках:
- 1: Старт удалённого узла (0х01)
- 2: Стоп удалённого узла (0х02)
- 3: Ввод Предрабочего состояния (0х80)
- 4: Перезапуск узла (0x81)
- 5: Перезапуск Связи (0х82)

6: Закончить инициализацию, введите предрабочее состояние и отправьте загрузочное сообщение.

Сообщение управления NMT может быть использовано для изменения режимов. Только NMT-Мастер может отправить сообщение в NMT Модуль управления, и все ведомые должны поддерживать сервис NMT Модуля управления, между тем сообщение NMT Модуля управления не требует ответа. Формат сообщения NMT выглядит следующим образом:

NMT-Master 🗲 NMT-Slave(s)

COB-ID	Byte 0	Byte 1
0x000	CS	Node-ID

When Node-ID is 0, then all the NMT slave device are addressing.CS is command, its value is as follows:

Command	NMT Service			
1	Start Remote Node			
2	Stop Remote Node			
128	Enter Pre-operational State			
129	Reset Node			
130	Reset Communication			

Например, если вы хотите узел из рабочего состояния вернуть в предрабочее состояние, то контроллер должен послать следующее сообщение: 0x000: 0x80 0x02.

10.3.3 CANopen Параметры Связи

Номер параметра	Внутренний адрес	Название	Описание	Значение по умолчанию
d5.00	2FF00108	Store_Loop_Data	 Сохраняет все параметры настроек за исключением моторов Инициализирует параметры настроек за исключением моторов 	0
d5.01	100B0008	ID_Com	Номер привода на станции. Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить.	1
d5.17	2F810008	CAN_Bandrate	Настройка скорости порта CAN 100: 1M 50: 500k 25: 250k 12: 125k 5: 50k 1: 10k Примечание: для изменения этого параметра необходимо сохранить его с адресом "d5.00" и перезагрузить.	50

Глава 11 Сигнализация и устранение неполадок

11.1 Аварийные сообщения

Мерцание дисплея обозначает аварийную ситуацию, являющуюся признаком того, что привод неисправен. Подробности ошибки см. в Таблице 11-1 "Коды ошибок". Код сообщения ошибки представляется шестнадцатеричными данными, и на индикаторе появляется четырехзначный код. Если привод неисправен, соответствующие биты в сообщениях ошибки выставляются в "1". Например, если энкодер не подключен, 1^{ый} и 2^{ой} биты кода ошибки устанавливаются в "1". В результате, на индикаторе будет показан код "0006".

1-ый	бит на	а цифр	овом	2-ой бит на цифровом			3-ий бит на цифровом			4-ый бит на цифровом					
инди	каторе	(левыі	1)	инди	каторе			индик	аторе			индин	аторе	(правь	ій)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ошибка ППЗУ	Связь	Зарезервировано	Превышение частоты	Ошибка Ilt	Напряжение логического уровня	Ошибка рассогласования	Резистор отсечки	Превышение тока	Пониженное напряжение	Повышенное напряжение	Over Temperature	Отсчет энкодера	UVW энкодер	АВZ энкодер	Внутренний

Таблица	11-1	Колы	ошибок
таолица	1 1 - 1	коды	OTINOOK

В приводе могут быть сохранены максимум 7 сгенерированных ошибок. Для того, чтобы получить подробности, войдите в меню Группы F007. Нажмите **Enter**. Будет показан интерфейс кодов ошибок. Первыми следуют ошибки, которые произошли в конце. Нажимайте кнопки ▲ или ▼ для того, чтобы просматривать сохраненные сообщения об ошибках. Если горит десятичная точка в нижнем правом углу второго бита цифрового дисплея, это означает, что вы смотрите наиболее старое сообщение об ошибке.

Для получения подробностей сообщений ошибок Вам необходимо воспользоваться программным обеспечением на ПК, посредством связи через коммуникационный порт. Вы сможете оценить состояние привода при возникновении ошибок. Ниже приведены некоторые сообщения ошибок привода:

- 1. Коды ошибок;
- 2. Напряжение на шине в момент, когда возникла ошибка;
- 3. Скорость мотора в момент, когда возникла ошибка;
- 4. Ток мотора в момент, когда возникла ошибка;
- 5. Температура привода в момент, когда возникла ошибка;
- 6. Режим работы привода в момент, когда возникла ошибка;
- 7. Кумулятивное время работы привода в момент, когда возникла ошибка;
- 8. Работал ли контур тока в момент, когда возникла ошибка; [0x0000 означает, что игнитрон не работает, а 0x0077 означает, что игнитрон работает]

11.2 Причины аварийных сообщений и выявление неисправностей

Код ошибки	Сообщение ошибки	Причина ошибки и выявление неисправностей
000.1	Внутреннее	
000.2	ABZ энкодера	Сигнальный кабель ABZ не подключен. Проверьте кабель.
000.4	UVW энкодера	Сигнальный кабель UVW не подключен. Проверьте кабель.
000.8	Отсчет энкодера	Шумы подавляются.
000.6	Ошибка энкодера	Сигналы энкодеров ABZ и UVW одновременно приводят к ошибкам. Проверьте кабель.
001.0	Превышение температуры	Температура привода превышает 75°С. Проверьте, достаточна ли мощность выбранного привода.
002.0	Превышение напряжения	Напряжение шины привода превышает допустимый диапазон. Проверьте входное напряжение, или определите, подключен ли тормозной резистор.
004.0	Низкое напряжение	Напряжение шины привода ниже допустимого диапазона. Проверьте входное питание.
008.0	Превышение тока	Игнитрон привода неисправен, или короткое замыкание на фазной линии мотора. Проверьте провода мотора. Если мотор нормально работает, значит ошибка происходит в игнитроне привода.
010.0	Компенсационный резистор	Тормозной резистор или компоненты тормозной цепи привода неисправны.
020.0	Ошибка рассогласования	Значение ошибки рассогласования превышает допустимый диапазон. Проверьте значение подачи вперед в контуре положения и максимально допустимое значение ошибки.
040.0	Напряжение логических уровней	Напряжение логического уровня ниже 18В. Проверьте блок питания логических уровней 24В.
080.0	Ошибка IIt	Нагрузка слишком высокая. Проверьте нагрузку и посчитайте, соответствует ли мощность мотора нагрузочным требованиям.
100.0	Превышение частоты	Частота входных импульсов превышает допустимое максимальное значение. Проверьте частоту входных импульсов и максимально допустимое значение частоты.
200.0	Зарезервировано	Зарезервировано.
400.0	Коммутация	При плохом контакте энкодера, или при возникновении некоторых ошибок при установке, рекомендуется вернуть неисправный энкодер производителю.
800.0	Ошибка ППЗУ	При сбое внутренней памяти, может возникнуть в результате обновления программ, или в результате неисправности контура ППЗУ. Верните неисправный модуль памяти производителю.

Глава 12 Приложения

Приложение 1: Выбор тормозного резистора

Модель привода	Мошность	Тормозной резистор[Ω]			Тип	Мощность	Номинальное
	привода (W)	Min.	Max.	Ref.	тормозного резистора	тормозного резистора (W)	тормозного резистора [VDC] (Min.)
	200W	32	100	75		100	500
	400W	32	100	75	T-75R-100	100	500
	750W	32	80	75		100	500
JD430	1000W	24	48	39		200	500
	1.05KW	24	48	39	T 20D 200	200	500
	1.25KW	20	40	39	1-39K-200	200	500
	1.26KW	20	40	39		200	500
JD620	1.26KW	50	120	75		200	800
	1.57KW	50	100	75	T-75R-200	200	800
	1.88KW	40	80	75		200	800

Примечание: при использовании тормозного резистора, установите значение тормозного резистора и мощность в параметры d5.04 и d5.05 соответственно. Пожалуйста, выберите мощность тормозного резистора в соответствии с этой таблицей.

Приложение 2: Выбор предохранителя

Модель привода	Мощность привода (W)	Характеристика предохранителя
	200W	3.5A/250VAC
	400W	7A/250VAC
	750W	15A/250VAC
JD430	1000W	20A/250VAC
	1.05KW	20A/250VAC
	1.25KW	25A/250VAC
	1.26KW	25A/250VAC
	1.26KW	15A/500VAC
JD620	1.57KW	16A/500VAC
	1.88KW	20A/500VAC