Содержание

ГЛАВА 1 Введение	
1.1 Краткое описание	
1.2 Список моделей	
1.3 Условия эксплуатации	
ГЛАВА 2 СРИ	
2.1 Обзор	
2.1.1 Внешний вид	
2.1.2 Типы СРU	
2.2 Функции	
2.2.1 Состояние СРU и LED	5
2.2.2 Порт программирования и последовательный порт	6
2.2.3 CAN порт	
2.2.4 Модули расширения	6
2.2.5 Высокоскоростной счетчик и высокоскоростной импульсный выход	7
2.2.6 Прерывания по фронту	7
2.2.7 Сохранение данных и резервное копирование данных	7
2.2.8 Часы реального времени (RTC)	
2.2.9 Батарея резервного питания	
2.3 Схема подключения	
2.4 Размеры	11
2.5 Технические характеристики	11
ГЛАВА 3 Модули расширения	
3.1 Обзор	
3.2 Цифровые	
3.2.1 KS122-12XR	
3.2.2 KS123-14DR	
3.2.3 Технические характеристики	
3.3 Аналоговые	
3.3.1 KS133-06IV	17
3.3.2 Диапазоны измерений	
3.3.3 Технические характеристики	19
	20
1 ЛАВА 4 Программное обеспечение	
4.1 0030p	
4.2 Посокоскоростной счетчик	
4.2.1 Гежимы работы и блоды высокоскоростных счетчиков	
4.2.2 Байт управления и Байт состояния	
4.2.5 Scrahobka sadahhoro shavehax (shavehac $r v$)	
4.2.4 Помер сообщия $CV = 1V$	25
4.2.5 Как использовать высокоскоростной счетчик	
4.3.1 Инструкция высокоскоростного импульсного выход	
4.3.2 Как использовать инструкции РГ S	
4.3.3 Как использовать инструкцию т Lo	
т.э.э так использовать команды управления позицией 4.4 Как использовать САМОрер	
1. Truk honomboburb of hoopen	

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

ГЛАВА 1 Введение

1.1 Краткое описание

ПЛК Кіпсо серии КЅ является небольшим и интегрированным контроллером. Это новый, тонкий и высокопроизводительный ПЛК Кіпсо. Основан на высокой производительности, высокой надежности и мощных функциях К5 / К2, серия КЅ использует процессор более высокого уровня. ПЛК КЅ имеет порт CANopen, более высокоскоростной ввод и вывод, малый размер для установки.

1.2 Список моделей

Серия	Модель	Описание	
	KS105-16DT	апряжение питания DC24V, DI 8*DC24V, DO 8*DC24V *RS232 порт для программирования, 1*RS485 lодули расширения: max 14	
CPU105	KS105C1-16DT	Напряжение питания DC24V, DI 8*DC24V, DO 8*DC24V 1*RS232 порт для программирования, 1*RS485, 1*CAN Без поддержки модулей расширения.	
	KS105C2-16DT	Напряжение питания DC24V, DI 8*DC24V, DO 8*DC24V 1*RS232 порт для программирования, 1*RS485, 2*CAN Модули расширения: max 14	

1.3 Условия эксплуатации

Kinco-KS соответствует стандарту GB/T 15969.3-2007 (idt IEC61131-2: 2007) и характеристикам испытаний. В следующей таблице перечислены все условия и требования для правильной работы. Пользователь обязан убедиться, что условия эксплуатации не выходят за границы.

Гранспортировка и хранение			
Условия	Температура	$-40^{\circ}C \sim +70^{\circ}C$	
окружающей	Относительная влажность	10% ~ 95%, без конденсата	
Среды	Высота	До 3000м	
Нормальная работа			
Условия окружающей	Температура воздуха	Открытое оборудование: -10°C ~ + 55°C Закрытый оборудование: -10°C ~ + 40°C	
среды	Относительная влажность	ть 10% ~ 95%, без конденсата	
	Высота	До 2000м	
Механические условия	Синусоидальная вибрация	5 < F <8,4, Случайные: амплитуда 3,5 мм; Непрерывная: амплитуда 1.75mm. 8.4 < F <150, Случайные: 1,0g ускорение; Непрерывная: 0,5g ускорение.	
Электромагнитная	Электростатический разряд	± 4 кВ контакт, ± 8 кВ воздух. Исполнение В.	
совместимость (ЕМС)	Скачок напряжения	АС питание сети: 2KV CM, 1KV DM; DC питание сети: 0.5KV CM, 0.5KV DM; I/O и порт связи: 1KV CM.	

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

		Исполнение В.
	Быстрые переходные импульсы	Питание сети: 2KV, 5KHz. I/O и порт связи: 1KV, 5KHz. Исполнение В.
	Падение и пропадание напряжение питания	Переменный ток питания: 50 Гц, 0% напряжения 1 период; 40% напряжения на 10 периодов; 75% напряжения на 20 периодов. Исполнение А.
Степень защиты		IP20

Глава 2 СРИ

2.1 Обзор

2.1.1 Внешний вид

2.1.2 Типы СРU

Kinco-KS имеет различные модели CPU с разнообразием функций и возможностей, все CPU используют источник питания DC24V. В следующей таблице описаны основные технические данные каждой модели CPU.

Параметр	KS105-16DT	KS105C1-16DT	KS105C2-16DT
Источник питания			
Номинальное напряжение питания	24VDC.		
Диапазон напряжения питания	20.4VDC ~ 28.8VDC		
I/O			
Цифровые І/О	8*DI, 8*DIO		
Аналоговые І/О	-		
Модуль расширения	14		14
CAN	протоколы CANopen master или CAN free		
Порт связи	PORT0, RS232, протокол программирования, MODBUS RTU slave, free протокол PORT1, RS485, протокол программирования, MODBUS RTU master, free протокол		
Высокоскоростные счетчики	4, макс. 200 кГц, поддержка однофазного и двухфазного сигнала		
Высокоскоростной импульсный выход	4 Канал 0, 1 и 2 Макс. 200 кГц (сопротивление нагрузки составляет менее 1,5 КΩ на самой высокой частоте) Канал 3 Макс. 10 кГц		
Прерывания	4, I0.0 ~ I0.3.		

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

Область памяти			
Максимальная программа пользователя	4К инструкций		
Данные пользователя	М область: 1 Kbyte; V область: 4 Kbyte		
Резервное копирование данных	E2PROM, 448 bytes		
Диапазон сохранения	2 Кбайт, литиевый элемент, как резервный источник питания, 3 года при нормальной температуре.		
Другое			
Таймеры	256 1 мс времени база: 4 10 мс времени база: 16 100 мс времени база: 236		
Временные прерывания	2 с базой 0,1 мс		
Счетчики	256		
Часы реального времени	Да, отклонение менее 5 мин / месяц при 25°С		

2.2 Функции

2.2.1 Состояние СРU и LED

СРU имеет два режима: режим **STOP** и режим **RUN.** В режиме **RUN**, процессор выполняет основной цикл сканирования и все задачи прерывания. В режиме **STOP**, процессор будет устанавливать все выходы (в том числе DO и AO) в значения, указанные в [Hardware Configuration] через Kincobuilder, и только запросы процесса связи, которые исходят от программного обеспечения KincoBuilder и других Modbus RTU ведущего устройства.

★ Изменение состояния СРU

Kinco-KS имеет два способа для ручного изменения состояния CPU:

- Установите все переключатели CAN-порта в положение [OFF], ПЛК будет находиться в состоянии STOP. Если любой переключатель [ON], ПЛК будет в состоянии RUN. (для KS105 используйте все 5

переключателей, для KS105C1 используйте 1 ~ 4 переключатели, для KS105C2 используйте 1 ~ 3).

- Используйте переключатель (RUN / STOP) в Kincobuilder; Выполните команды [Debug] -> [RUN] или [STOP].

В следующей таблице перечислены результаты этих двух способов.

Переключатель	Команда KincoBuilder	Фактический режим работы
DUN	RUN	RUN
KUN	STOP	STOP
STOP	RUN	STOP
	STOP	STOP

Кроме того, если СРU обнаружит любую серьёзную ошибку, он немедленно перейдёт в состояние STOP.

★ Индикация состояния CPU

Модуль CPU имеет четыре состояния LED индикаторов: RUN, STOP, Comm. и Err.

[RUN] : Если CPU находится в состоянии RUN, зелёный LED индикатор будет включен. Если CPU находится в состоянии STOP, он будет выключен.

[Err.]: Если CPU обнаружит ошибку в программе пользователя или модуля расширения, включится красный LED индикатор.

KS разделяет ошибки по трём уровням: фатальная ошибка, серьезная ошибка, нормальная ошибка. Когда CPU обнаружит ошибку, он будет использовать другой способ управления в соответствии с уровнем ошибки и включит индикатор **Err.**, потом он сохранит код ошибки для анализа пользователя.

2.2.2 Порт программирования и последовательный порт

KS обеспечивает 2 порта связи, PORT1 и PORT2. Они поддерживают скорость до 115,2 кбит / с. PORT1 может использоваться как порт программирования, а также поддерживать протокол Modbus RTU slave и протокол free. PORT2 поддерживает протокол Modbus RTU (как ведомый или ведущий) и протокол free. Порт программирования PS232 находится в порту RJ45. Выводы и функции, как показано ниже.

PC (RS232)	Контакт	Контакт	PLC (RJ45)
Rx	2	 3	Тх
Tx	3	 6	Rx
GND	5	 4	GND

RS232 (RJ45) не должен подключаться / отключаться под напряжением, поэтому необходимо отключить питание ПЛК или ПК, иначе порт будет повреждён.

2.2.3 CAN порт

KS105C1-16DT имеет 1 порт CAN, CAN2. Он может поддерживать CANopen master и free протокол. KS105C2-16DT имеет 2 порта CAN, CAN1 и CAN2. CAN2 может поддерживать CANopen master и free протокол. CAN1 может поддерживать протокол free.

2.2.4 Модули расширения

KS105-16DT имеет порт расширения, к нему можно подключать модули расширения серии KS. Порт CAN1

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

KS105C2-16DT может работать как порт расширения, а также поддерживать протокол. Пользователи могут использовать их напрямую без настройки, ПЛК может идентифицировать его автоматически.

2.2.5 Высокоскоростной счетчик и высокоскоростной импульсный выход

KS имеет 4 высокоскоростных счетчика (HSC0 ~ HSC3). Высокоскоростной счетчик поддерживает несколько режимов: однофазный, CW / CCW, фаза AB. Все HSC поддерживают до 200 кГц (однофазные и фазы AB).

KS имеет 4 высокоскоростных импульсных выхода (Q0.0, Q0.1, Q0.4 и Q0.5). Все они поддерживают РТО и PWM. Q0.0, Q0.1 и Q0.4 поддерживает до 200 кГц (сопротивление нагрузки должно быть меньше, чем 3 кОм), Q0.5 поддерживает до 10 кГц.

2.2.6 Прерывания по фронту

10.0 ~ 10.3 поддерживают функции прерывания по фронту, он может выполнить прерывание по переднему фронту и заднему фронту входного сигнала. С помощью этой функции, он может быстро захватить передний фронт и задний фронт входного сигнала. Для некоторых входных сигналов, ширина импульса меньше, чем время сканирования СРU, он может реагировать быстрее.

2.2.7 Сохранение данных и резервное копирование данных

Сохранение данных означает, что данные в памяти могут сохраниться после сбоя питания. СРU имеет литиевую батарейку (заменяемая но не перезаряжаемая) для сохранения данных. Когда пропадает питание СРU, данные в оперативной памяти будут поддерживаться с помощью литиевой батарейки, и сохраняющиеся диапазоны будут оставлены без изменений до следующего включения. С помощью

[Hardware] в конфигурации KincoBuilder, пользователь может выбрать тип сохраняемых данных (например, V, C) и диапазон области. Срок службы батареи составляет 5 лет, а продолжительность сохранения 3 года при нормальной температуре.

Резервное копирование данных заключается в том, что CPU обеспечивает E2PROM постоянно сохранёнными данными. При включении питания, CPU будет восстанавливать данные из оперативной памяти E2PROM для исполнения.

Примечание: Поскольку E2PROM имеет ограничение на запись в 1 млн раз, пользователи должны избегать записи данных в области резервного копирования данных слишком часто.

Для резервного копирования данных в V области есть 448 байт (VB3648 ~ VB4095), данные в этой области будут сохраняться в E2PROM автоматически. KS устанавливает VB3648 ~ VB3902 как резервное копирование данных по умолчанию, если пользователь нуждается в использовании VB3903 ~ VB4095 для резервного копирования данных, то необходимо настроить в конфигурации [PLC hardware configuration]. Интерфейс конфигурации на следующем рисунке.

2.2.8 Часы реального времени (RTC)

Часы реального времени имеются во всех моделях CPU, могут отображать в режиме реального времени индикацию часов / календаря. Пользователи должны использовать KincoBuilder [PLC] → [Time of Day Clock...], чтобы установить часы при использовании RTC в первый раз. Затем пользователи могут

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

использовать в режиме реального времени инструкции часов (READ_RTC, SET_RTC, RTC_W, RTC_R). После выключения питания CPU, часы реального времени могут поддерживаться литиевой батарейкой. Срок службы батареи составляет 5 лет, а продолжительность сохранения 3 года при нормальной температуре.

2.2.9 Батарея резервного питания

KS может использовать литиевую батарею в качестве резервного аккумулятора. Когда выключается питание PLC, он будет использовать резервную батарею для поддержания часов реального времени и RAM.

Резервная батарея съемная, пользователь может заменить батарею на новую, когда батарея разрядится.

Аккумулятор литиевый CR2032 (3V) с разъемом, как показано на рисунке. Пользователь может заказать батарею отдельно.

2.3 Схема подключения

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48 www.systemcontrol.ru samara@systemcontrol.ru info@systemcontrol.ru

2.4 Размеры

2.5 Технические характеристики

***** Характеристики DI

Тип входа	Сток
Номинальное входное напряжение	DC 24V (Max. 30V)
Номинальный входной ток	3.5mA, 24VDC
Макс входное напряжение логического 0	5V, 0.7mA
Мин входное напряжение логической 1	Общий канал: 11V@2.0mA
Входной фильтр задержки времени · off-to-on · on-to-off	1,2 мкс 0,5 мкс
Изоляция между входом и внутренними цепями • Режим • Напряжение	Оптоэлектрическая развязка 500В AC / 1 мин

***** Характеристики DO (транзисторный тип)

Тип выхода	Исток
Номинальное напряжение питания	24В, допустимый диапазон: DC20.4V ~ DC28.8V
Выходной ток для каждого канала	Номинальный ток: 200 мА Max. ток 300 мА, 24VDC
Мгновенный импульсный ток для каждого канала	1А, менее 1 сек
Ток утечки выхода	Max.0.5A
Выходное сопротивление	Max. 0.2Ω
Задержка выхода · off-to-on · on-to-off	Общий канал: 12мкс; HSC канал: 0,5 мкс; Общий канал: 35мкс; HSC канал: 1мкс;
 Защита: Защита от неправильной полярности источника питания Защита при индуктивной нагрузке Защита от короткого замыкания Защита от неправильной полярности выхода 	Нет Да Да Да, меньше, чем 10 сек.
Изоляция между выходом и внутренними цепями • Режим • Напряжение	Оптоэлектрическая развязка 500В AC/ 1 мин

ГЛАВА З Модули расширения

3.1 Обзор

Серия KS может расширяться с помощью модулей расширения. Питание для модулей расширения KS составляет 24 В постоянного тока. Модули расширения KS имеют один стандартный порт RS485, который может работать как Modbus slave.

Примечание: Некоторые адреса ведущего устройства Modbus RTU начинаются с 1, поэтому данные в приведенной ниже форме должны добавьте 1 напрямую.

Тип	Форма	Код Modbus	Область	Modbus адрес
KS122-12XR	DO (0XXXX)	01,05,15	Q0.0-Q1.3	0-11
KS123-14DR	DI (1XXXX)	02	I0.0 I0.7	0-7
	DO (0XXXX)	01,05,15	Q0.0-Q0.5	0-5
KS133-06IV	AI (3XXXX)	04	AIW0 AIW6	0-3
	AO (4XXXX)	03,06,16	AQW0 AQWQ	0-1

3.2 Цифровые

3.2.1 KS122-12XR

Этот модуль расширения имеет 12 релейных выходов.

3.2.2 KS123-14DR

Этот модуль расширения имеет 8 цифровых входов и 6 релейных выходов.

3.2.3 Технические характеристики

Электрические параметры			
Номинальное напряжение	DC 24V ,≥100mA		
Входы	8		
Тип входа	исток / сток		
Номинальный входной ток	3.5mA@24VDC		
Максимальное входное напряжение логического "0"	5V		
Минимальное входное напряжение логической "1"	11V@2.0mA		
Изоляция между входом и внутренними цепями - Тип изоляции - Напряжение изоляции	Фотоэлектрическая пара 500VAC/1мин		
Выходы	6 реле		
Максимальное напряжение нагрузки	DC 30V/AC250V		
Выходной ток	2A (DC 30V/AC250V)		
Время задержки для включения выхода	10ms (max.)		
Время задержки для выключения выхода	5ms (max.)		
Срок службы реле - Механическая жизнь (без нагрузки) - Электрический ресурс (номинальная нагрузка)	20,000,000 раз (1200 раз/мин) 100,000 раз (6 раз/мин)		
Изоляция вывода • Режим изоляции • Напряжение изоляции	реле 2000Vrms		
Размеры и вес			
Размеры (длина × ширина × высота)	100×84.5×25.4 мм		
Bec	200г.		

3.3 Аналоговые

3.3.1 KS133-06IV

Этот модуль имеет 4 аналоговых входа и 2 аналоговых выхода. Измеряет и выводит стандартный сигнал напряжения и тока 4-20 мA, 1-5 B, 0-20 мA, 0-10 B. Все каналы в одном модуле расширения могут быть как токовыми так и вольтовыми.

3.3.2 Диапазоны измерений

*Аналоговые входы

Входной сигнал в каждом канале будет измерять АЦП и счетчик. Результаты будут отправлены в область AI процессора с расширения CAN. Затем пользовательская программа может отобразить его. Все типы сигналов имеют диапазон обнаружения. Если значение превышает диапазон, модули будут предупреждать, и LED индикатор будет включен. Тем временем модуль расширения отправит сигнал неисправности в CPU. Пожалуйста, подключите все входы, которые не используются, а также настройте тип сигнала [0-20 мA] или [0-10 B], после чего эти каналы не будут предупреждать о неисправности. Ниже представлен диапазон обнаружения и значения. I - входной ток, V - входное напряжение.

Тип сигнала	Диапазон	Формат
4-20mA	3.92-20.4mA	L.1000
0-20mA	0-20.4mA	1x1000
1-5V	0.96-5.1V	V~1000
0-10V	0-10.2V	V X1000

*Аналоговые выходы

Выход AQ будет отправлять модулям расширения аналоговый сигнал по шине, затем считать и изменять. После этого он будет выводиться из канала с помощью ЦАП.

Диапазон выходного сигнала всех типов сигналов ограничен. Если выход превышает диапазон, выход будет поддерживать ограниченное значение с вверху / с внизу.

Ниже представлена форма - это выходной диапазон и формат значений. І - реальный ток, V - реальное напряжение

Тип сигнала	Выходной диапазон	Выходное значение
4-20mA	3.92-20.4mA	L. 1000
0-20mA	0-20.4mA	1x1000
1-5V	0.96-5.1V	V~1000
0-10V	0-10.2V	VX1000

3.3.3 Технические характеристики

Электрические параметры	
Номинальное напряжение	DC 24V ,≥100mA
Аналоговые входы	4
Тип сигнала	4-20mA, 1-5V, 0-20mA, 0-10V
Разрешение	12 bit
Точность	0.3% от полной шкалы
Ограничение сигнала	Ток не превышает 24 мА, напряжение не превышает 12 В
Скорость изменения (каждый канал)	15 pa3 / S
Входное сопротивление	Токовый вход: <= 250 Ом Вольтовый вход: > 4 МОм
Аналоговые выходы	2
Тип сигнала	4-20mA, 1-5V, 0-20mA, 0-10V
Разрешение	12 bit
Точность	0.3% от полной шкалы
Скорость изменения (каждый канал)	15 pa3 / S
Нагрузка	Токовый выход: Максимально 500 Ом Вольтовый выход: Минимально 10 кОм
Размеры и вес	
Размеры (длина × ширина × высота)	100×84.5×25.4 мм
Bec	200г.

ГЛАВА 4 Программное обеспечение

4.1 Обзор

На основе K5 KS использует то же программное обеспечение и инструкции Kincobuilder. Для большинства функций пользователи могут ссылаться на руководство K5 / K2. Основное различие - новые функции.

4.2 Высокоскоростной счетчик

КS имеет 4 высокоскоростных счетчика HSC0 ~ HSC3. Все HSC могут поддерживать до 200 кГц. Высокоскоростной счетчик поддерживает несколько режимов: однофазные, CW/CCW, фаза AB. Все высокоскоростные счетчики поддерживает максимум 32 PV и 32 "CV = PV" прерываний. PV может быть установлен как относительное или абсолютное значение.

4.2.1 Режимы работы и входы высокоскоростных счетчиков

Входные сигналы высокоскоростного счетчика включают в себя: счёт (входной импульс), направление, запуск и сброс. В различных режимах работы входные сигналы отличаются. Пожалуйста, смотрите ниже:

HSC0							
Режим	Описание	I0.1	I0.0	10.5			
0	Однофазный счетчик вверх / вниз						
1	с внутренним контролем	Счёт	Сброс				
2	направления: SM37.3		Сброс	Пуск			
3	Однофазный счетчик вверх / вниз	Craër		Направление			
4	с внешним контролем направления	Cuer	Сброс	Направление			
6	Двухфазный счетчик вверх / вниз с синхронизацией входов	Счёт вниз	Счёт вверх				
9	Счетчик с фазой А / В	Счёт А	Счёт В				

HSC1							
Режим	Описание	I0.4	I0.6	10.3	I0.2		
0	Олнофазный счетчик вверх / вниз						
1	с внутренним контролем	Сброс		Счёт			
2	направления: SM47.3	Сброс	Пуск				
3	Однофазный счетчик вверх / вниз			Cruïm	Направление		
4	с внешним контролем направления	Сброс		Cuer	Направление		
6	Двухфазный счетчик вверх / вниз			Cuin auro	Cruïm an annu		
7	с синхронизацией входов	Сброс		Счет вниз	Счет вверх		
9	Cuamura haaai A/D			Cuin A	Cuir D		
10	Счетчик с фазои А / В	Сброс		Счет А	Счет В		

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

	HSC2						
Режим	Описание	I0.4	10.5				
0	Однофазный счетчик вверх / вниз с внутренним контролем направления: SM57.3		Счёт				
9	Счетчик с фазой А / В	Счёт А	Счёт В				

	HSC3						
Режим	м Описание 10.6 10.7						
0	Однофазный счетчик вверх / вниз с внутренним контролем направления: SM127.3		Счёт				
9	Счетчик с фазой А / В	Счёт А	Счёт В				

4.2.2 Байт управления и Байт состояния

* Байт управления

В SM области, каждому высокоскоростному счетчику присваивается контрольный байт, чтобы сохранить свои данные конфигурации: одно управляющее слово (8 бит), текущее значение и предварительный набор (двойной число с 32 бит). Начальное значение текущей заданной величины. Если текущее значение записано в высокоскоростной счетчик, он будет начинать отсчет с этого значения. Пожалуйста, смотрите ниже:

HSC0	HSC1	HSC2	HSC3	Описание	
SM37.0	SM47.0	SM57.0	SM127.0	Эффективный уровень сигнала сброса: 0 = высокий, 1 = низкий	
SM37.1	SM47.1	SM57.1	SM127.1	Эффективный уровень сигнала старта: 0 = высокий, 1 = низкий	
SM37.2	SM47.2	SM57.2	SM127.2	Скорость прямоугольного счетчика: 0 = 1x; 1 = 4x	
SM37.3	SM47.3	SM57.3	SM127.3	Направление счета: 0 = уменьшение; 1 = увеличение	
SM37.4	SM47.4	SM57.4	SM127.4	Записать направление счета в HSC? 0 = нет; 1 = да	
SM37.5	SM47.5	SM57.5	SM127.5	Написать новое предустановленное значение в HSC? 0 = нет; 1 =	
				да	
SM37.6	SM47.6	SM57.6	SM127.6	Написать новое текущее значение HSC? 0 = нет; 1 = да	
SM37.7	SM47.7	SM57.7	SM127.7	Разрешить этот высокоскоростной счетчик? 0 = нет; 1 = да	
HSC0	HSC1	HSC2	HSC3	Описание	
SMD38	SMD48	SMD58	SMD128	Текущее значение	
SMD42	SMD52	SMD62	SMD132	Предустановленное значение	

HSC0	HSC1	HSC2	HSC3	Описание
SM141.0	SM151.0	SM161.0	SM171.0	Использовать несколько предустановленных значений: 0 = нет; 1 = да
SM141.1	SM151.1	SM161.1	SM171.1	Предустановленное значение типа: 0 = абсолютное значение; 1 = относительное значение.
SM141.2	SM151.2	SM161.2	SM171.2	Предустановленное значение сравнения ("CV = PV") прерывания циклического выполнения: 0 = нет; 1 = да. Примечание: действительно только, когда заданное значение является относительной величиной.
SM141.3	SM151.3	SM161.3	SM171.3	Зарезервировано
SM141.4	SM151.4	SM161.4	SM171.4	Обновление нескольких сегментов PV и предустановленного значения: 0 = нет; 1 = да.
SM141.5	SM151.5	SM161.5	SM171.5	Сброс прерывания переменной: 0 = да; 1 = нет.
SM141.6	SM151.6	SM161.6	SM171.6	Зарезервировано
SM141.7	SM151.7	SM161.7	SM171.7	Зарезервировано
HSC0	HSC1	HSC2	HSC3	Описание
SMW142	SMW152	SMW162	SMW172	Начальное значение таблицы заданных значений (это смещение соответствующее VB0), это должно быть нечетным значением.

Обратите внимание, что не все управляющие биты управляющего байта подходят для всех режимов. Например, "Counting direction" и "Write counting direction in HSC" могут использоваться только в режиме 0,1 и 2 (Однофазный счетчик вверх / вниз с внутренним контролем направления), если режим работы с внешним управлением направления, то эти два бита будет игнорироваться.

Управляющий байт, текущее значение и заданное значение = 0 по умолчанию после включения питания.

* Байт состояния

В SM области, каждый высокоскоростной счетчик имеет байт состояния, который показывает текущее состояние высокоскоростного счетчика.

HSC0	HSC1	HSC2	HSC3	Описание
SM36.0	SM46.0	SM56.0	SM126.0	Зарезервировано
SM36.1	SM46.1	SM56.1	SM126.1	Зарезервировано
SM36.2	SM46.2	SM56.2	SM126.2	Зарезервировано
SM36.3	SM46.3	SM56.3	SM126.3	Неисправность в нескольких табличных значениях PV: 0 = нет, 1 = да
SM36.4	SM46.4	SM56.4	SM126.4	Зарезервировано
SM36.5	SM46.5	SM56.5	SM126.5	Текущее направление счета: 0 = вниз; 1 = вверх
SM36.6	SM46.6	SM56.6	SM126.6	Текущее значение равно заданному значению: 0 = нет, 1 = да
SM36.7	SM46.7	SM56.7	SM126.7	Текущее значение больше, чем заданное значение: 0 = нет, 1 = да
HSC0	HSC1	HSC2	HSC3	Описание
SMB140	SMB150	SMB160	SMB170	Номер текущего сегмента PV (пуск с 0)

4.2.3 Установка заданного значения (значение PV)

KS поддерживает до 32 значений PV для каждого высокоскоростного счетчика, и поддерживает настройки значения PV, как относительного или абсолютного значения. Он поддерживает "CV = PV" прерывания циклического выполнения.

Следует принять HSC0 в качестве примера для описания функции значения PV и настройку.

* Как выбрать режим "multiple PV"

В контрольном байте каждого высокоскоростного счетчика есть один бит управления для включения нескольких предустановленных значений. В HSC0, этот контроль бит SM141.0.

Если SM141.0 = 0, он будет использовать одно значение PV, такой же, как PLC К5. SMD42 для нового значения PV, SM37.5 для обновления этого нового значения PV.

Если SM141.0 = 1, он будет использовать несколько значений PV. В этой ситуации, SM37.5 и SMD42 являются недействительными. Все значения PV будут в таблице PV (SMW142 для запуска адресов таблицы), SM141.4 определяет, использовать ли данные в таблице PV или нет. Если SM141.4 = 1, то HSC будет получать данные из таблицы PV, когда он включится. Если SM141.4 = 0, то HSC будет игнорировать данные в таблице PV и получать данные из последнего заданного значения.

***** Таблица PV

При использовании таблицы PV, все значения PV получит из таблицы PV. Каждый HSC имеет одно управляющее слово, которое используется для установки начального адреса таблицы PV. При использовании **multiple PV**, все значения PV получит из таблицы PV. Начальным адресом PV таблицы является адрес V области, такой, как 301 (VB301). Формат таблицы PV выглядит следующим образом.

OFFSET ⁽¹⁾	Тип данных	Описание
0	BYTE	Количество PV
1	DINT	Первый РV
5	DINT	Второй PV
	DINT	

(1) Все значения смещения являются байтом смещения, связанные с таблицей.

(2) Когда он установлен в качестве относительного значения, то абсолютное значение данных PV должно быть больше, чем 1, или PLC будет рассматривать сегмент **multiple PV** конечным и подсчитает количество PV в соответствии с этим (с более высоким приоритетом, чем настройки количества PV). Когда он установлен как абсолютное значение, разность между абсолютными значениями двух соседних PV должна быть больше, чем 1 или PLC будет рассматривать сегмент **multiple PV** конечным и подсчитает количество PV в соответствии с этим (с более высоким приоритетом, чем настройки количества PV). (3) "CV = PV" прерывания должны выполняться последовательно, это означает, что после того, как счетчик достигнет первого PV и выполнит прерывание, то он будет сравнивать со вторым PV и так далее. (4) PV должно быть установлено достаточно. Здесь принимает относительное значение, как, например, если счет положительный, PV должен быть больше 0, в противном случае прерывание"CV = PV" не будет выполняться. Если счет отрицательный, PV должно быть меньше 0, в противном случае "CV = PV" прерывание, также никогда не выполнится.

* Относительное значение и абсолютное значение

В байте управления каждого высокоскоростного счетчика, есть один бит управления, который используется для установки PV как относительного или абсолютного значения. Для HSC0 контроль бит SM141.1. Если SM141.1 = 0, то PV является абсолютным значением. Когда значение счета равно PV, он будет выполнять "CV = PV" прерывание. Например, если установлено три значения PV, такие как 1000, 2000 и 3000, то когда значение счета достигнет 1000, он выполнит первое прерывание "CV = PV". Когда значение

Компания «Системы контроля», официальный дистрибьютор на территории РФ www.systemcontrol.ru 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 samara@systemcontrol.ru 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48 info@systemcontrol.ru

счета достигнет 2000, он выполнит второе прерывание"CV = PV" и так далее.

Если SM141.1 = 1, то PV является относительным значением. Если счетчик принимает текущее значение счета как опорное, в то время когда значение продолжает счёт равен PV, он выполнит прерывание "CV = PV". Например, если установлено три значения PV, такие как 10, 1000 и 1000, и текущее значение счета = 100 до начала HSC, затем, когда значение счёта достигнет 110, 1110 и 2110, он выполнит соответствующее прерывание "CV = PV".

★ Циклическое выполнение прерывания "CV = PV"

Выполнение циклического прерывания "CV = PV" действительно только, когда PV устанавливается как относительное значение.

Если SM141.2 = 0, то прерывание "CV = PV" выполняется только один раз. Когда все прерывания закончат выполнение, то он остановится. Если нужно выполнить снова, то нужно изменить соответствующие регистры и выполнить команду HSC снова.

Если SM141.2 = 1, то прерывание "CV = PV" будет выполняться циклически. Когда последнее прерывание PV завершит выполнение, PLC примет текущее значение счета в качестве эталона для расчета нового значения прерывания PV, затем он начнет сравнивать значение счета и выполнит прерывание "CV = PV" и так далее. Этот процесс будет выполнять циклически.

Например, установлено три значения PV, такие как 10, 1000 и 1000. И текущее значение счета = 100 до начала HSC, тогда значение для каждого прерывания в следующей таблице:

Текущее значение счёта	Время прерывания	Первое значение	Второе значение	Третье значение
100	1st	110	1110	2110
2110	2nd	2120	3120	4120
4120	3rd	4130	5130	6130
	N			

4.2.4 Номер события "CV = PV"

Когда используется режим одного PV, HSC будет полностью совместим с К5 (включая номер события "CP = PV"). Когда используется режим **multiple PV**, HSC будет назначать новый номер события для 32 PV, как показано в следующей таблице.

Высокоскоростной счётчик	Номер прерывания	Описание
	64	"CV = PV" прерывание 1 PV
USC0	65	"CV = PV" прерывание 2 PV
		(+1)
	95	"CV = PV" прерывание 32 PV
	96	"CV = PV" прерывание 1 PV
USC1	97	"CV = PV" прерывание 2 PV
пъст		(+1)
	127	"CV = PV" прерывание 32 PV
	128	"CV = PV" прерывание 1 PV
HSC2	129	"CV = PV" прерывание 2 PV
		(+1)
	159	"CV = PV" прерывание 32 PV

HSC3	160	"CV = PV" прерывание 1 PV
	161	"CV = PV" прерывание 2 PV
		(+1)
	191	"CV = PV" прерывание 32 PV

4.2.5 Как использовать высокоскоростной счетчик

* Метод 1: Используйте инструкции для программирования

1) Настроить байт управления HSC и определить текущее значение (т.е. начальное значение) и установленное значение.

2) Использовать инструкцию HDEF для определения счета и его режима работы.

3) (Дополнительно) Используйте инструкцию АТСН для определения прерываний.

4) Используйте инструкцию HSC, чтобы запустить высокоскоростной счетчик.

* Метод 2: Использование «HSC Wizard»

В PLC K2 есть мастер конфигурации для высокоскоростного счетчика. Пользователи могут использовать его для настройки всех высокоскоростных счетчиков и не нужно программировать. После использования мастера для настройки HSC, пользователь также может использовать **"метод 1"**, чтобы изменить параметры HSC. **HSC Wizard** показан на рисунке:

Tizard	1	<u>.</u>		_	
HSC: HS	SCO 🗾	Mode: Mod	e 0 💌	🔽 Enable H	3C Start method: Run directly at PLC startup
Quadratu Signal J	ure rate:]1x Input: Pulse	• IO.1;	Rese	t signal lev	el: High 💌 Start signal level: High 💌
☑ Updat ☑ Updat	te direction te count valu	New dir e New cou	ection: mt value:	ν _Ρ	Enable external reset interrupt Interrupt routine: Enable external direction-changed interrupt Interrupt routine:
PV and o	corresponding	interrupts	r		
▼ Up	date PV and o Address %VD3010	uantity Value 100	Quantity: Event 64	3 : Interrupt r (INTOO) IN	Starting location of PV table(VB): 3009 outine T_0
2 3	%VD3014 %VD3018	200 300	65 66	(INTO1) IN (INTO2) IN	T_1 Down T_2 Dolote
Single	PV settings(date preset v	compatible alue(PV)	with KS)- New PV:	2	Enable "CV=PV" interrupt Interrupt routine:
				Ann	Jr OK Cancel Halp

Как использовать HSC Wizard:

- 1) Выберите счетчик в **[HSC]**
- 2) Проверьте [Enable HSC], а затем продолжите следующие конфигурации.
- 3) Выберите режим счетчика в [Mode].
- 4) Выберите начальную режим в [Start method].
- Есть два стартовых метода:

"Using HSC instruction": если выбран этот метод, то нужно выполнить команду HSC, чтобы начать HSC. Перед выполнением инструкции HSC, не нужно настраивать регистры и выполнять инструкцию HDEF. "Run directly at PLC startup": При выборе этого метода, HSC начнется автоматически после включения ПЛК без выполнения каких-либо инструкций.

5) Если пользователю необходимо использовать режим multiple PV, поставьте галочку [Enable multiple

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

PVs] и продолжайте настраивать все значения PV и связанные "Value" и "Interrupt subroutine". Если стоит галочка [Update PV and quantity], то его значение можно изменить в [Quantity] для изменения количества PV.

6) Если пользователю необходимо использовать режим одного PV, тогда поставьте галочку [Update preset value(PV)] в "Single PV settings" и измените значение PV и связанное прерывание подпрограммы.
7) Для других опций, пожалуйста, обратитесь к описаниям HSC.

4.3 Как использовать высокоскоростной импульсный выход

Kinco KS имеет 4 высокоскоростных импульсных выхода Q0.0, Q0.1, Q0.4 и Q0.5. При этом Q0.0, Q0.1 и Q0.4 поддерживают максимум 200 кГц, а Q0.5 поддерживает максимум 10кГц.

KS имеет выходной канал одного направления для каждого высокоскоростного выхода. KS обеспечивает управление одним направлением в области SM.

	Q0.0	Q0.1	Q0.4	Q0.5
Выход направления	Q0.2	Q0.3	Q0.6	Q0.7
Контроль направления	SM201.3	SM231.3	SM251.3	SM221.3

Сигнал направления: логический 0 — вращение вперёд, логическая 1 — реверс.

Управление разрешением направления может запретить или разрешить выходной канал. Это наивысший приоритет. Если это запрещено, он не будет выводить сигнал управления направлением. Канал будет работать как обычный DO.

4.3.1 Инструкция высокоскоростного импульсного выхода

KS имеет 3 типа инструкций для высокоскоростного импульсного выхода.

1) PLS: используется для вывода РТО (один сегмент или несколько сегментов) и PWM.

2) Position control: имеет 5 инструкций, такие как PREL (относительное позиционирование), PABS (абсолютное позиционирование), PHOME (возврат в исходное положение), PJOG (Бег) и PSTOP (аварийный останов). Пользователь может использовать эти инструкции, чтобы достичь контроля позиционирования. Примечание: При использовании команды управления позиции, частота выходного импульса должна быть не менее 125 Гц.

3) Инструкция PFLO_F: имеет такие параметры, как входная частота (F), электронное передаточное отношение (NUME, DENOM), количество импульсов (COUNT) и так далее, эти параметры могут быть использованы в качестве переменной.

Частота импульсного выхода равна F кратной электронному передаточному отношению. Когда количество импульсов достигает значения COUNT, то выход остановится и установит бит DONE.

Примечание: При использовании этой команды, частота выходного импульса должна быть не менее 30 Гц.

4.3.2 Как использовать инструкцию PLS

PLS инструкция может выполнять выходную функцию PTO и PWM.

- PTO: Pulse Train Output (импульсный выход).
- PWM: Pulse-Width Modulation (широтноимпульсная модуляция).

* Описание Название Использование Группа Подходит для PLS EN ENO К2 LD PLS ۵ К5 KS IL PLS PLS Q U

Операнд	Вход / выход	Тип данных	Описание
Q	Вход	INT	Константа (0,1,2 или 3)

Инструкция PLS используется для загрузки соответствующих конфигураций PTO / PWM из указанных регистров SM, а затем начинает вывод импульсов до тех пор, пока не закончится вывод импульсов. Импульсный выход определяется параметром Q, 0 означает Q0.0, 1 означает Q0.1, 2 означает Q0.4, 3 означает Q0.5.

Примечание: В программе пользователя, нужно только выполнить команду PLS, когда это требуется. Инструкция PLS выполняется по переднему фронту. Если на входе PLS всё время присутствует логическая единица, то она не будет выполнятся.

∎ LD

Если EN равен 1, то PLS выполняется.

∎ IL

Если CR = 1, то PLS выполняется. Это не повлияет на значение CR.

4.3.2.1 Функция высокоскоростного импульсного выхода Kinco-KS

Kinco-KS имеет 4 РТО / РWM генератора импульсов, которые могут быть использованы для выходов РТО / РWM. Поэтому, один генератор присваивается в Q0.0 и называется РWM0 или РТО0; второй присваивается в Q0.1 и называется РWM1 или РТО1, третий назначается в Q0.4 и называется РWM2 или РТО2. Четвёртый назначается в Q0.5 и называется РWM3 или РТО3.

Генераторы импульсов РТО / РWM и область отображения DO разделяются в адресе памяти Q0.0, Q0.1, Q0.4 и Q0.5. Когда в программе пользователя выполняются инструкции высокоскоростного импульсного выхода, то генератор РТО / РWM контролирует выход и запрещает нормальное использование этого выходного канала.

Некоторые регистры представлены в SM области для каждого генератора РТО / РWM. Когда пользователю необходимо использовать функцию импульсного выхода, он должен настроить эти регистры, а затем выполнить инструкцию PLS для реализации желаемой работы РТО / РWM.

* PWM

PWM обеспечивает непрерывный импульсный выход с переменным рабочим циклом, и вы можете контролировать время цикла и длительность импульса.

Единица времени цикла и времени длительности импульса микросекунды (μs) или миллисекунды (ms). Максимальное значение времени цикла 65535. Если время длительности импульса больше, чем значение времени цикла, рабочий цикл задается на 100% автоматически и выход включен непрерывно. Если время длительности импульса равно 0, то рабочий цикл задается равным 0%, а выход выключен.

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

***** PTO

РТО обеспечивает прямоугольные импульсы (50% рабочего цикла) на выходе, и вы можете контролировать время цикла и количество выходных импульсов. Единица времени цикла микросекунды (μs), или миллисекунды (ms). Максимальное значение времени цикла 65535. Диапазон числа импульсов 2 ~ 4,294,967,295. Если указанное число импульсов меньше 2, то Кіпсо К2 установит соответствующий бит ошибки и запретит выход.

РТО функция обеспечивает одиночный сегмент импульсов и множественный сегмент импульсов.

• Одиночный сегмент импульсов

В режиме одиночного сегмента импульсов он выполняет только выход последовательности импульсов один раз после выполнения инструкции PLS.

Множественный сегмент импульсов

В режиме мульти сегментных импульсов, процессор автоматически считывает конфигурации каждого сегмента РТО из таблицы профиля, расположенной в области V и выполняет соответствующий сегмент РТО.

Длина каждого сегмента составляет 8 байт, в том числе значение времени цикла (16-бит, WORD), зарезервированное значение (не используется в настоящее время, 16-бит, INT), и значение количества импульсов (32-бит, DWORD). Вследствие этого, все выходные импульсы одни и те же, в том же сегменте. Он использует инструкцию PLS, чтобы начать много сегментные импульсы.

В этом режиме, начальный адрес таблицы хранится в SMW168 (соответствует РТОО), SMW178 (соответствует РТО1) и SMW268 (соответствует РТО2). Настройка базового времени SM67.3 (соответствует РТО0), SM77.3 (соответствует РТО1) и SM87.3 (соответствует РТО2). Единица измерения базового времени может быть микросекунды или миллисекунды. Все значения цикла в таблице должны использовать одну и ту же временную базу, и не могут быть изменены, когда профиль выполняется. В следующей таблице описывается формат таблицы профиля.

Байт смещение ¹	Длина	Сегмент	Описание
0	8-bit		Количество сегментов (от 1 до 64)
1	16-bit		Начальное время цикла (от 2 до 65535 время от базы времени)
3	16-bit	1	Зарезервировано
5	32-bit		Количество импульсов (от 1 до 4294967295)
9	16-bit		Начальное время цикла (от 2 до 65535 время от базы времени)
11	16-bit	2	Зарезервировано
13	32-bit		Количество импульсов (от 1 до 4294967295)

(1) Все смещения в этой колонке по сравнению с исходной позицией в таблице профиля. Примечание: начальная позиция в таблице профилей должна быть нечетным адрес в V области, например, VB3001.

4.3.2.2 Регистр РТО / PWM

Каждый генератор РТО / РWM снабжен некоторым регистром в области SM для хранения своей конфигурации, как показано в следующей таблице.

Q0.0	Q0.1	Q0.4	Q0.5	Описание
SM67.0	SM77.0	SM97.0	SM107.0	РТО / РWM. Следует ли обновлять время цикла: 0 = нет; 1 = да

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

SM67.1	SM77.1	SM97.1	SM107.1	РWM. Следует ли обновлять время ширины импульса: 0 = нет; 1 =
				да
SM67.2	SM77.2	SM97.2	SM107.2	РТО. Следует ли обновлять число импульсов: 0 = нет, 1 = да
SM67.3	SM77.3	SM97.3	SM107.3	РТО / РWM. Время базы: 0 = 1мкс; 1 = 1мс
SM67.4	SM77.4	SM97.4	SM107.4	PWM. Метод обновления: 0 = асинхронный; 1 = синхронный
SM67.5	SM77.5	SM97.5	SM107.5	РТО. Режим работы: 0 = одно сегментный; 1 = много сегментный
SM67.6	SM77.6	SM97.6	SM107.6	Выбор функции: 0 = PTO; 1 = PWM
SM67.7	SM77.7	SM97.7	SM107.7	РТО / РWM. Включение / отключение: 0 = отключить; 1 =
				включить

Q0.0	Q0.1	Q0.4	Q0.5	Описание
SMW68	SMW78	SMW98	SMW108	РТО / РWM. Время цикла, диапазон: 2 ~ 65535
SMW70	SMW80	SMW100	SMW110	PWM. Длительность импульса, диапазон: 0 ~ 65535
SMD72	SMD82	SMD102	SMD112	РТО. Количество импульсов, диапазон: 1 ~ 4,294,967,295
SMW168	SMW178	SMW218	SMW248	Исходное расположение таблицы профиля (байт смещения от V0), только для много сегментной работы РТО.

Все значения по умолчанию для управляющего байта, времени цикла и количества импульсов = 0. Что бы изменить конфигурацию РТО / РWM, во-первых нужно настроить соответствующие регистры управления, если это много сегментный импульс РТО, он также нуждается в настройке таблицы профиля, а затем выполнения команды PLS.

Каждый РТО / РWM генератор также имеет байт состояния в области SM, пользователь может получить информацию о состоянии РТО / РWM генератора от байта состояния, как показано в следующей таблице.

Q0.0	Q0.1	Q0.4	Q0.5	Описание
SM66.0	SM76.0	SM96.0	SM106.0	Зарезервировано
SM66.1	SM76.1	SM96.1	SM106.1	Зарезервировано
SM66.2	SM76.2	SM96.2	SM106.2	Зарезервировано
SM66.3	SM76.3	SM96.3	SM106.3	PWM в режиме ожидания: $0 =$ нет, $1 =$ да
SM66.4	SM76.4	SM96.4	SM106.4	Время цикла или число импульсов РТО неверное: 0 = нет, 1 = да Примечание: Время цикла и количество импульсов должны быть больше 1.
SM66.5	SM76.5	SM96.5	SM106.5	Профиль РТО прекращён в связи с командой пользователя: 0 = нет, 1 = да
SM66.6	SM76.6	SM96.6	SM106.6	Зарезервировано
SM66.7	SM76.7	SM96.7	SM106.7	РТО в режиме ожидания: 0 = нет, 1 = да

Бит ожидания РТО или бит ожидания PWM означает завершение РТО или PWM выхода.

4.3.2.3 Операции РТО

В качестве примера возьмём РТОО, что бы показать, как настраивать и эксплуатировать генератор РТО /

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

PWM в программе пользователя.

Есть две процедуры для использования РТО: настройка соответствующих регистров управления и инициализации РТО. Выполнение команды PLS.

Используйте SM0.1 (первое сканирование бита памяти), чтобы вызвать подпрограмму, которая содержит инструкции инициализации. Поскольку SM0.1 используется, подпрограмма должна быть выполнена только один раз, и это снижает время сканирования CPU и обеспечивает лучшую структуру программы.

* Выполнение РТО (Одно сегментная работа)

1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

Например, SMB67 = B # 16 # 85 означает:

- Включение РТО / РWМ функции
- Выбор работы РТО
- Выбор 1 мкс как время базы

• Разрешение изменение числа импульсов и времени цикла.

2) Установите SMW68 в соответствии с желаемым временем цикла.

3) Установите SMD72 в соответствии с желаемым количеством импульсов.

4) (Необязательно) используйте АТСН для прикрепления событие РТОО-завершение (событие 28) к программе обработки прерываний, чтобы ответить в режиме реального времени на событие РТООзавершение.

5) Выполните команду PLS, чтобы настроить РТОО и запустить его.

* Изменение времени цикла РТО (Одно сегментная работа)

Выполните следующие шаги, чтобы изменить время цикла РТО.

1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

Например, SMB67 = В # 16 # 81 означает:

- Включение РТО / РWМ функции
- Выбор операции РТО
- Выбор 1 мкс как время базы
- Разрешение обновления значения времени цикла.
- 2) Установите SMW68 в соответствии с желаемым временем цикла.

3) Выполните команду PLS, чтобы настроить РТОО и запустить его, после этого новый РТО с обновленным временем цикла начнёт генерироваться.

* Изменение числа импульсов РТО (Одно сегментная работа)

Выполните следующие действия, чтобы изменить количество импульсов РТО:

1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

Например, SMB67 = В # 16 # 84 означает:

- Включение РТО / РWМ функции
- Выбор операции РТО
- Выбор 1 мкс как время базы
- Разрешение изменения числа импульсов

2) Установите SMD72 в соответствии с желаемым количеством импульсов.

3) Выполните команду PLS, чтобы настроить РТОО и запустить его, после этого новый РТО с обновленным количеством импульсов начнёт генерироваться.

* Выполнение РТО (Много сегментная работа)

1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

Например, SMB67 = B # 16 # A0 означает:

- Включение РТО / РWМ функции
- Выбор операции РТО
- Выбор много сегментной работы

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

Выбор 1 мкс как время базы

2) Установите нечетное число в качестве исходного положения таблицы профиля в SMW168.

3) Используйте V область, чтобы настроить таблицу профиля.

4) (Необязательно) используйте АТСН для прикрепления событие РТОО-завершение (событие 28) к программе обработки прерываний, чтобы ответить в режиме реального времени на событие РТООзавершение.

5) Выполните команду PLS, чтобы настроить РТОО и запустить его.

4.3.2.4 Операции РWM

В качестве примера возьмём PWM0, что бы показать, как настраивать и эксплуатировать генератор PTO / PWM в программе пользователя.

Есть две процедуры для использования PWM: настройка соответствующих регистров управления и инициализации PWM. Выполнение команды PLS.

Используйте SM0.1 (первое сканирование бита памяти), чтобы вызвать подпрограмму, которая содержит инструкции инициализации. Поскольку SM0.1 используется, подпрограмма должна быть выполнена только один раз, и это снижает время сканирования CPU и обеспечивает лучшую структуру программы.

★ Выполнение PWM

1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

- Например, SMB67 = B # 16 # D3 означает:
 - Включение РТО / РWМ функции
 - Выбор операцию РWM
 - Выбор 1 мкс как время базы
- Разрешение обновления значения ширины импульса и времени значение цикла
- 2) Установите SMW68 в соответствии с желаемым временем цикла.
- 3) Установите SMW70 в соответствии с требуемой шириной импульса.
- 4) Выполните команду PLS, чтобы настроить PWM0 и запустить его.

* Изменение длительности импульса для PWM выхода

Далее описываются шаги для изменения длительности выходного импульса PWM. 1) Установите контрольный байт SMB67 в соответствии с желаемой работой.

- Например, SMB67 = B # 16 # D2 означает:
 - Включение РТО / РWМ функции
 - Выбор операции РWM
 - Выбор 1 мкс как время базы
 - Разрешить обновления значения ширины импульса и времени значения цикла
- 2) Установите SMW70 в соответствии с требуемой шириной импульса.

3) Выполните команду PLS, чтобы настроить PWM0 и запустить его.

4.3.3 Как использовать команды управления позицией

4.3.3.1 Как изменить текущее значение команды управления позицией

* Регистры управления и регистры состояния

Для команд управления позицией Kinco-KS определяет управляющий байт для каждого высокоскоростного выходного канала для хранения свои настроек. Кроме того, он назначает регистр текущего значения (DINT) для хранения количества импульсов, которое в настоящее время выводятся (это значение будет увеличиваться при счёте вперед и снижаться при счёте назад). В следующей таблице описаны байт управления и текущее значение.

Компания «Системы контроля», официальный дистрибьютор на территории РФ 443090 г. Самара, ул. Советской Армии 180, строение 3, оф. 506 «Б» т/ф. (846) 273-49-42 111141 г. Москва, 2-й проезд Перова Поля, д.9 т/ф. (495) 727-28-48

Q0.0	Q0.1	Q0.4	Q0.5	Описание
SMD212	SMD242	SMD262	SMD226	Только для чтения. Текущее значение (увеличиваться при счёте вперед и снижаться при счёте назад). Означает количество импульсов, которое уже выводится.
SMD208	SMD238	SDM258	SDM222	Чтение / запись. Новое текущее значение. Используется для изменения текущего значение с определенным битом управления.
Q0.0	Q0.1	Q0.4	Q0.5	Описание
SM201.7	SM231.7	SM251.7	SM221.7	Чтение / запись. Бит аварийного останова. Если этот бит равен 1, никаких инструкций контроля положения не могут быть выполнены. При выполнении инструкции PSTOP, этот бит устанавливается = 1 автоматически, и он должен быть сброшен в программе.
SM201.6	SM231.6	SM251.6	SM221.6	Чтение / запись. Сброс текущего значения: 1 = очищать текущее значение 0 = поддерживать текущее значение
SM201.5	SM231.5	SM251.5	SM221.5	Зарезервировано
SM201.4	SM231.4	SM251.4	SM221.4	Чтение / запись. Используется для изменения текущее значения: 1 = изменение текущего значения 0 = поддерживать текущее значение
SM201.3	SM231.3	SM251.3	SM221.3	Чтение / запись. Бит управление направлением: 1 = отключение выходного канала направления, он будет использоваться в качестве обычного выхода 0 = включить выходной канал направления
SM201.2 ~ SM201.0	SM231.2 ~ SM231.0	SM251.2 ~ SM251.0	SM221.2 ~ SM221.0	Зарезервировано

* Как изменить текущее значение

Каждый высокоскоростной выходной канал имеет один регистр для текущего значения, SMD212, SMD242 и SMD262, SMD226. Выведенное количество импульсов хранится в этих регистрах. Регистры текущего значения только для чтения, если пользователю нужно изменить текущее значение, он может использовать следующие методы:

∎ Метод 1

Использовать бит сброса для очистки текущего значения.

Бит сброса для трёх выходных каналов SM201.6, SM231.6 и SM251.6, SM221.6.

Когда бит сброса = 1, ПЛК установит текущее значение = 0. Таким образом, требуется только одно сканирование для активации бита сброса. Когда нужно использовать этот бит, старайтесь избегать, чтобы этот бит всегда был = 1, а также старайтесь не устанавливать этот бит во время выполнения команды Position Control (PHOME, PREL, PABS, JOG и PFLO_F), в противном случае значение счетчика может быть неправильным.

Возьмём для примера канал 0 для описания, как сбросить текущее значение.

```
(* Network * 0)
(* Основано на сигнале возврата в исходное положение, когда он перемещается в исходное положение,
требуется очистить текущее значение *)
LD %SM0.0
PHOME 0, %M0.0, %M0.1, %M0.2, %VW0, %VW2, %VW4, %VD6, %VW10, %M0.4, %M0.5, %MB1
(* Network * 1)
(* После окончания PHOME, используйте бит завершения "DONE", чтобы очистить текущее значение *)
LD %M0.4
R_TRIG
ST %SM201.6
```

∎ Метод 2

Изменение текущего значения с помощью следующих регистров.

Q0.0	Q0.1	Q0.4	Q0.5	Описание
SMD208	SMD238	SMD258	SMD222	Чтение / запись. Новое текущее значение. Используется для изменения текущего значение с определенным битом управления.
SM201.4	SM231.4	SM251.4	SM221.4	Чтение / запись. Используется для изменения текущее значения: 1 = изменение текущего значения 0 = поддерживать текущее значение

Возьмём для примера канал 0 для описания метода. Если SM201.4 = 0, то он будет поддерживать текущее значение SMD212. Если SM201.4 = 1, то он будет перемещать значение SMD208 в SMD212. Когда нужно использовать этот бит, старайтесь избегать, чтобы этот бит всегда был = 1, а также старайтесь не устанавливать этот бит во время выполнения команды Position Control (PHOME, PREL, PABS, JOG и PFLO_F), в противном случае значение счетчика может быть неправильным.

```
Возьмём для примера канал 0 для описания, как изменить текущее значение:
(* Network 0 *)
(* Основано на сигнале возврата в исходное положение, когда он перемещается в исходное положение,
требует установить текущее значение = 100. *)
LD
         %SM0.0
PHOME 0, % M0.0, M0.1%, % M0.2, % agpecy VW0, % VW2, % VW4, % VD6, % VW10, % M0.4, M0.5%, % MB1
(* Network 1 *)
(* После окончания PHOME, используйте бит завершения "DONE", что бы изменить текущее значение. *)
          %M0.4
LD
R TRIG
MOVE
          DI # 100, %SMD208
          %SM201.4
ST
```

4.3.3.2 Можно ли изменить максимальную выходную частоту, когда выполняется инструкция управления положением?

PREL (относительное положение) и PABS (абсолютное положение) не изменят максимальную выходную частоту, когда они выполняются. Они будут считывать параметры Минимальная частота, Максимальная частота и Время разгона / торможения, когда он запускается, и вычисляет подходящее ускорение / торможение в соответствии со значением этих параметров, затем он начнет выход пульсов. Во время выхода

импульсов, PREL и PABS не будут читать новые параметры, поэтому, изменение этих параметры не влияет на импульсный выход.

PJOG (бег) будет считывать входную частоту импульса (MAXF) все время, когда он выполняется, и регулировать частоту выходного импульса в соответствии с новой настройкой частоты.

PHOME (возврат в исходное) будет считывать максимальную частоту (MAXF) все время, когда он работает на максимальной частоте, но не найдёт сигнала возврата в исходное положение, и вычислит ускорение или торможение автоматически в соответствии с новой настройкой частоты, затем он будет ускорять или замедлять выходной импульс с новой частотой.

4.4 Как использовать СА Nopen

KS105C1-16DT имеет 1 порт CAN, CAN2

KS105C2-16DT имеет 2 порта CAN, CAN1 и CAN2.

CAN2 поддерживает протокол CANopen master и протокол free. CAN1 поддерживает free протокол.

Основная функция CANopen KS такая же, как K5.

Для free протокола используйте инструкции по обмену данными ((CAN_INIT, CAN_WRITE, CAN_READ, CAN_RX), параметры CH, 0 — CAN1, 1 — CAN2.